Navigation Links
NIST team proves bridge from conventional to molecular electronics possible

Researchers at the National Institute of Standards and Technology (NIST) have set the stage for building the evolutionary link between the microelectronics of today built from semiconductor compounds and future generations of devices made largely from complex organic molecules. In an upcoming paper in the Journal of the American Chemical Society,* a NIST team demonstrates that a single layer of organic molecules can be assembled on the same sort of substrate used in conventional microchips.

The ability to use a silicon crystal substrate that is compatible with the industry-standard CMOS (complementary metal oxide semiconductor) manufacturing technology paves the way for hybrid CMOS-molecular device circuitrythe necessary precursor to a beyond CMOS totally molecular technologyto be fabricated in the near future.

Scientists classify crystal structures by the particular plane or face cutting through the crystal that is exposed. Most research to date on silicon substrates for molecular electronic devices has been done with a crystal orientation that is convenient for organic molecules but incompatible with CMOS technologies. For their electronic device, the NIST team first demonstrated that a good quality monolayer of organic molecules could be assembled on the silicon orientation common to industrial CMOS fabrication, verifying this with extensive spectroscopic analysis.

They then went on to build a simple but working molecular electronic devicea resistorusing the same techniques. A single layer of simple chains of carbon atoms tethered on their ends with sulfur atoms were deposited in tiny 100-nanometer deep wells on the silicon substrate and capped with a layer of silver to form the top electrical contact. The use of silver is a departure from other molecular electronic studies where gold or aluminum has been used. Unlike the latter two elements, silver does not displace the monolayer or impede its ability to function.

The NIST team fabricated two molecular electronic devices, each with a different length of carbon chain populating the monolayer. Both devices successfully resisted electrical flow with the one possessing longer chains having the greater resistance as expected. A control device lacking the monolayer showed less resistance, proving that the other two units did function as nonlinear resistors.

The next step, the team reports, is to fabricate a CMOS-molecular hybrid circuit to show that molecular electronic components can work in harmony with current microelectronics technologies.


Contact: Michael E. Newman
National Institute of Standards and Technology (NIST)

Related biology technology :

1. Brazilian National Biosafety Technical Committee Approves Monsanto Company Insect-Protected Corn Trait
2. FDA Approves RISPERDAL(R) to Treat Adolescents with Schizophrenia and Children and Adolescents with Bipolar Mania
3. FDA Approves ACAM2000(TM) Vaccine for Protection Against Smallpox
4. NJ Board of Pharmacy Approves Wedgewood Pharmacy Technician-Training Program
5. FDA Approves Expanded Labeling for Campath(R) to Include First-line Treatment for Leading Form of Adult Leukemia
6. FDA Approves New 300mg Loading Dose Tablet for PLAVIX(R) (clopidogrel bisulfate)
7. FDA Approves Administration of LEXIVA(R) with Lower Dose of Boosting Medication Ritonavir
8. FDA Approves DORIBAX(TM) for the Treatment of Complicated Intra-Abdominal and Complicated Urinary Tract Infections
9. FDA Approves IXEMPRA(TM) (ixabepilone), a Semi-Synthetic Analog of Epothilone B, for the Treatment of Advanced Breast Cancer
10. FDA Approves Genzymes Renvela(TM) for Dialysis Patients
11. FDA Approves New SPRYCEL(R) (Dasatinib) Product Labeling for Patients with Chronic-Phase CML
Post Your Comments:
Related Image:
NIST team proves bridge from conventional to molecular electronics possible
(Date:11/27/2015)... India , November 27, 2015 /PRNewswire/ ... --> Growing popularity of companion diagnostics ... in cancer biomarkers market with pharmaceutical companies ... in-demand companion diagnostic tests. ... --> Complete report on global cancer ...
(Date:11/25/2015)... November 25, 2015 2 nouvelles études ... les différences entre les souches bactériennes retrouvées dans ... des êtres humains . Ces recherches  ouvrent une ... la prise en charge efficace de l,un des ... les chats .    --> 2 nouvelles ...
(Date:11/25/2015)... ... November 25, 2015 , ... A long-standing partnership between ... (OPBAP) has been formalized with the signing of a Memorandum of Understanding. , ... leaders Capt. Karl Minter and Capt. Albert Glenn Tuesday, November 24, 2015, at ...
(Date:11/24/2015)... ... ... The United States Golf Association (USGA) today announced Dr. Bruce Clarke, of ... since 1961, the USGA Green Section Award recognizes an individual’s distinguished service to the ... of Iselin, N.J., is an extension specialist of turfgrass pathology in the department of ...
Breaking Biology Technology:
(Date:11/10/2015)... NEW YORK , Nov. 10, 2015 /PRNewswire/ ... refers to behavioral biometrics that helps to identify ... prevent fraud. Signature is considered as the secure ... for the identification of a particular individual because ... offers more accurate results especially when dynamic signature ...
(Date:11/9/2015)... Calif. , Nov. 9, 2015  Synaptics Inc. ... interface solutions, today announced broader entry into the automotive ... solutions that match the pace of consumer electronics human ... biometric sensors are ideal for the automotive industry and ... Europe , ...
(Date:11/2/2015)... , Nov. 2, 2015  SRI International has been ... provide preclinical development services to the National Cancer Institute ... will provide scientific expertise, modern testing and support facilities, ... preclinical pharmacology and toxicology studies to evaluate potential cancer ... The PREVENT Cancer Drug Development Program is an ...
Breaking Biology News(10 mins):