Navigation Links
NIST scientists study how to stack the deck for organic solar power
Date:7/29/2009

A new class of economically viable solar power cellscheap, flexible and easy to makehas come a step closer to reality as a result of recent work* at the National Institute of Standards and Technology (NIST), where scientists have deepened their understanding of the complex organic films at the heart of the devices.

Organic photovoltaics, which rely on organic molecules to capture sunlight and convert it into electricity, are a hot research area because in principle they have significant advantages over traditional rigid silicon cells. Organic photovoltaics start out as a kind of ink that can be applied to flexible surfaces to create solar cell modules that can be spread over large areas as easily as unrolling a carpet. They'd be much cheaper to make and easier to adapt to a wide variety of power applications, but their market share will be limited until the technology improves. Even the best organic photovoltaics convert less than 6 percent of light into electricity and last only a few thousand hours. "The industry believes that if these cells can exceed 10 percent efficiency and 10,000 hours of life, technology adoption will really accelerate," says NIST's David Germack. "But to improve them, there is critical need to identify what's happening in the material, and at this point, we're only at the beginning."

The NIST team has advanced that understanding with their latest effort, which provides a powerful new measurement strategy for organic photovoltaics that reveals ways to control how they form. In the most common class of organic photovoltaics, the "ink" is a blend of a polymer that absorbs sunlight, enabling it to give up its electrons, and ball-shaped carbon molecules called fullerenes that collect electrons. When the ink is applied to a surface, the blend hardens into a film that contains a haphazard network of polymers intermixed with fullerene channels. In conventional devices, the polymer network should ideally all reach the bottom of the film while the fullerene channels should ideally all reach the top, so that electricity can flow in the correct direction out of the device. However, if barriers of fullerenes form between the polymers and the bottom edge of the film, the cell's efficiency will be reduced.

By applying X-ray absorption measurements to the film interfaces, the team discovered that by changing the nature of the electrode surface, it will repulse fullerenes (like oil repulses water) while attracting the polymer. The electrical properties of the interface also change dramatically. The resultant structure gives the light-generated photocurrent more opportunities to reach the proper electrodes and reduces the accumulation of fullerenes at the film bottom, both of which could improve the photovoltaic's efficiency or lifetime.

"We've identified some key parameters needed to optimize what happens at both edges of the film, which means the industry will have a strategy to optimize the cell's overall performance," Germack says. "Right now, we're building on what we've learned about the edges to identify what happens throughout the film. This knowledge is really important to help industry figure out how organic cells perform and age so that their life spans will be extended."


'/>"/>

Contact: Chad Boutin
boutin@nist.gov
301-975-4261
National Institute of Standards and Technology (NIST)
Source:Eurekalert  

Related biology technology :

1. Gladstone scientists uncover potential mechanism of memory loss in Alzheimers disease
2. Three Studies by Independent Scientists Highlighting Pressure Cycling Technology (PCT) to be Presented this Week at the British Mass Spectrometry Societys 29th Annual Meeting
3. Social Network for Scientists Marks Ten Years Online
4. Scientists synthesize memory in yeast cells
5. Scientists synthesize memory in yeast cells
6. University of Leicester scientists discover technique to help friendly bacteria
7. Scientists discover how cancer may take hold
8. Yale scientists make 2 giant steps in advancement of quantum computing
9. New Scientists Boost Disease-based Research at Boston Biomedical Research Institute
10. Scientists say sabercat bit like a pussycat
11. New Corporate Website Launched - Focus on Life Scientists, Flow Cytometrists, & Clinicians
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
NIST scientists study how to stack the deck for organic solar power
(Date:10/11/2017)... ... October 11, 2017 , ... ... implantation and pregnancy rates in frozen and fresh in vitro fertilization (IVF) ... and maternal age to IVF success. , After comparing the results from the ...
(Date:10/10/2017)... Los Angeles, CA (PRWEB) , ... ... ... Pharmaceuticals, Inc., a development-stage cancer-focused pharmaceutical company advancing targeted antibody-drug conjugate (ADC) ... all uses of targeted HPLN (Hybrid Polymerized Liposomal Nanoparticle), a technology developed ...
(Date:10/10/2017)... Parks Associates announced today that Tom Kerber , Director ... , October 11 in Scottsdale, Arizona . Kerber will ... safety and security products impact the competitive landscape. ... Parks Associates: Smart Home Devices: Main Purchase Driver ... "The residential security market has experienced continued growth, and the introduction of ...
(Date:10/10/2017)... ... October 10, 2017 , ... The Pittcon Program Committee is ... honoring scientists who have made outstanding contributions to analytical chemistry and applied spectroscopy. ... world’s leading conference and exposition for laboratory science, which will be held February ...
Breaking Biology Technology:
(Date:10/4/2017)... 2017  GCE Solutions, a global clinical research organization (CRO), announces ... solution on October 4, 2017. Shadow is designed to assist medical ... policy 0070 of the European Medicines Agency (EMA) in meeting the ... ... ...
(Date:6/23/2017)... N.Y. and ITHACA, N.Y. ... ) and Cornell University, a leader in dairy research, ... with bioinformatics designed to help reduce the chances that ... With the onset of this dairy project, Cornell University ... Consortium for Sequencing the Food Supply Chain, a food ...
(Date:5/6/2017)... RAM Group , Singaporean based ... in biometric authentication based on a novel  ... to perform biometric authentication. These new sensors are based on ... Ram Group and its partners. This sensor will have ... and security. Ram Group is a next generation ...
Breaking Biology News(10 mins):