Navigation Links
NIST researchers hear puzzling new physics from graphene quartet's quantum harmonies
Date:9/9/2010

GAITHERSBURG, Md. Using a one-of-a-kind instrument designed and built at the National Institute of Standards and Technology (NIST), an international team of researchers have "unveiled" a quartet of graphene's electron states and discovered that electrons in graphene can split up into an unexpected and tantalizing set of energy levels when exposed to extremely low temperatures and extremely high magnetic fields. Published in this week's issue of Nature,* the new research raises several intriguing questions about the fundamental physics of this exciting material and reveals new effects that may make graphene even more powerful than previously expected for practical applications.

Graphene is one of the simplest materialsa single-atom-thick sheet of carbon atoms arranged in a honeycomb-like latticeyet it has many remarkable and surprisingly complex properties. Measuring and understanding how electrons carry current through the sheet is important to realizing its technological promise in wide-ranging applications, including high speed electronics and sensors. For example, the electrons in graphene act as if they have no mass and are almost 100 times more mobile than in silicon. Moreover, the speed with which electrons move through graphene is not related to their energy, unlike materials such as silicon where more voltage must be applied to increase their speed, which creates heat that is detrimental to most applications.

To fully understand the behavior of graphene's electrons, scientists must study the material under an extreme environment of ultra-high vacuum, ultra-low temperatures and large magnetic fields. Under these conditions, the graphene sheet remains pristine for weeks, and the energy levels and interactions between the electrons can be observed with precision (see "Graphene Yields Secrets to Its Extraordinary Properties," www.nist.gov/public_affairs/techbeat/tbx20090514_graphene.htm, NIST Tech Beat Extra, May 14, 2009).

NIST recently constructed the world's most powerful and stable scanning-probe microscope, with an unprecedented combination of low temperature (as low as 10 millikelvin, or 10 thousandths of a degree above absolute zero), ultra-high vacuum and high magnetic field. In the first measurements made with this instrument, the team has used its power to resolve the finest differences in the electron energies in graphene, atom-by-atom.

"Going to this resolution allows you to see new physics," said Young Jae Song, a postdoctoral researcher who helped develop the instrument at NIST and make these first measurements.

And the new physics the team saw raises a few more questions about how the electrons behave in graphene than it answers.

Because of the geometry and electromagnetic properties of graphene's structure, an electron in any given energy level populates four possible sublevels, called a "quartet." Theorists have predicted that this quartet of levels would split into different energies when immersed in a magnetic field, but until recently there had not been an instrument sensitive enough to resolve these differences.

"When we increased the magnetic field at extreme low temperatures, we observed unexpectedly complex quantum behavior of the electrons," said NIST Fellow Joseph Stroscio.

What is happening, according to Stroscio, appears to be a "many-body effect" in which electrons interact strongly with one another in ways that affect their energy levels.

One possible explanation for this behavior is that the electrons have formed a "condensate" in which they cease moving independently of one another and act as a single coordinated unit.

"If our hypothesis proves to be correct, it could point the way to the creation of smaller, very-low-heat producing, highly energy efficient electronic devices based upon graphene," said Shaffique Adam, a postdoctoral researcher who assisted with theoretical analysis of the measurements.

The research team, led by Joseph Stroscio, includes collaborators from NIST, the University of Maryland, Seoul National University, the Georgia Institute of Technology, and the University of Texas at Austin.

The group's work was also recently featured in Nature Physics,** in which they describe how the energy levels of graphene's electrons vary with position as they move along the material's crystal structure. The way in which the energy varies suggests that interactions between electrons in neighboring layers may play a role.


'/>"/>

Contact: Mark Esser
markesser@nist.gov
301-975-8735
National Institute of Standards and Technology (NIST)
Source:Eurekalert

Related biology technology :

1. Virginia Tech researchers contribute to turkey genome sequencing
2. Researchers create new class of piezoelectric logic devices using zinc oxide nanowires
3. Researchers stretch a lackluster material into a possible electronics revolution
4. Researchers successfully test new alternative to traditional semiconductors
5. WSU researchers use super-high pressures to create super battery
6. Pitt-led researchers to build foundation for quantum supercomputers with $7.5 million federal grant
7. Engineering researchers simplify process to make worlds tiniest wires
8. CSHL researchers demonstrate efficacy of antisense therapy for spinal muscular atrophy
9. Caliper Owners Group Meeting Showcases Critical Role of Biopharma and Academic Researchers for Improving Healthcare and Quality of Life
10. Researchers develop living, breathing human lung-on-a-chip
11. Researchers at Rensselaer Polytechnic Institute develop new method for mass-producing graphene
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:1/24/2017)... As Outsourcing of Cell Line Development Services Drives the ... by Expanding their Service Portfolio and Collaborating with Biopharmaceutical ... cell banking market addresses market sizing, emerging trends, and ... in the market. The base year considered is 2015 ... The cell banking market is expected to grow ...
(Date:1/24/2017)... ORANGE COUNTY, Calif. , Jan. 24, 2017 ... respiratory testing solutions, announced today that in ... providing advanced respiratory assessment to the Roche FIREFISH ... muscular atrophy (SMA) develop respiratory insufficiency due to ... alpha motor neurons in the spinal cord. This ...
(Date:1/24/2017)... Reha Technology USA Inc. has ... . The need for Robotic technology in the rehab space ... in the surgical space. Project Walk – Boston ... and adding technology to their continuum of care. They now have ... repetitions which has been shown to improve gait with patients. The ...
(Date:1/24/2017)... Relmada Therapeutics, Inc. (OTCQB: RLMD), a clinical-stage ... nervous system (CNS) diseases, is pleased to announce that ... with the U.S. Food and Drug Administration (FDA), a ... LevoCap ER (REL-1015, levorphanol extended release, abuse deterrent capsules) ... filing is achievable.   "The FDA,s input ...
Breaking Biology Technology:
(Date:1/24/2017)... 2017 Biopharm Reports has carried out ... of nuclear magnetic resonance spectroscopy (NMR). This involved ... current practices, developments, trends and end-user plans over ... and opportunities. These areas include growth in the ... and innovation requirements, hyphenated NMR techniques, main suppliers ...
(Date:1/24/2017)... , Jan. 24, 2017  It sounds simple ... sock that monitors vital signs and alerts parents ... infant,s oxygen saturation level drops. But pediatric experts ... to parents, with no evidence of medical benefits, ... are marketed aggressively to parents of healthy babies, ...
(Date:1/23/2017)... , Jan. 23, 2017  The latest mobile market ... prices have dropped dramatically. The quarterly average price of ... to $276 in Q4 2016.  There are now 120 ... of $116, up from just 28 a year ago ... According to Maxine Most , Acuity Market Intelligence ...
Breaking Biology News(10 mins):