Navigation Links
NIST demos industrial-grade nanowire device fabrication
Date:10/26/2007

In the growing catalog of nanoscale technologies, nanowirestiny rows of conductor or semiconductor atomshave attracted a great deal of interest for their potential to build unique atomic-scale electronics. But before you can buy some at your local Nano Depot, manufacturers will need efficient, reliable methods to build them in quantity. Researchers at the National Institute of Standards and Technology (NIST) believe they have one solutiona technique that allows them to selectively grow nanowires on sapphire wafers in specific positions and orientations accurately enough to attach contacts and layer other circuit elements, all with conventional lithography techniques. They detailed their results in a recent paper.*

Despite their name, nanowires are more than just electrical connectors. Researchers have used nanowires to create transistors like those used in memory devices and prototype sensors for gases or biomolecules. However working with objects only tens of nanometers wide is challenging. A common approach in the lab is to grow nanowires like blades of grass on a suitable substrate, mow them off and mix them in a fluid to transfer them to a test surface, using some method to give them a preferred orientation. When the carrier fluid dries, the nanowires are left behind like tumbled jackstraws. Using scanning probe microscopy or similar tools, researchers hunt around for a convenient, isolated nanowire to work on, or place electrical contacts without knowing the exact positions of the nanowires. Its not a technique suitable for mass production.

Building on earlier work to grow nanowires horizontally on the surface of wafers (see Gold Nano Anchors Put Nanowires in Their Place), NIST researchers used conventional semiconductor manufacturing techniques to deposit small amounts of gold in precise locations on a sapphire wafer. In a high-temperature process, the gold deposits bead up into nanodroplets that act as nucleation points for crystals of zinc oxide, a semiconductor. A slight mismatch in the crystal structures of zinc oxide and sapphire induces the semiconductor to grow as a narrow nanowire in one particular direction across the wafer. Because the starting points and the growth direction are both well known, it is relatively straightforward to add electrical contacts and other features with additional lithography steps.

As proof of concept, the NIST researchers have used this procedure to create more than 600 nanowire-based transistors, a circuit element commonly used in digital memory chips, in a single process. In the prototype process, they report, the nanowires typical grew in small bunches of up to eight wires at a time, but finer control over the size of the initial gold deposits should make it possible to select the number of wires in each position. The technique, they say, should allow industrial-scale production of nanowire-based devices.


'/>"/>

Contact: Michael Baum
michael.baum@nist.gov
301-975-2763
National Institute of Standards and Technology (NIST)  
Source:Eurekalert

Related biology technology :

1. Comparison of Performance Characteristics of Different Biolistic Devices
2. Measurement of proteasome inhibition in live cells in Molecular Devices microplate fluorometers
3. TomoTherapy to sell medical devices in India
4. Security concerns grow with mobile tech devices
5. Am I spoiled if I expect well-designed mobile devices?
6. Midwest retains dominant role in 2005 world medical device market
7. Students will show off biomedical devices to professors and investors
8. RFID medical devices - Opportunities and challenges
9. State of biotech, medical device sector is focus of upcoming conference
10. Midwest plays key role in developing new medical device companies
11. Medical device industry growing in importance in Midwest
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
NIST demos industrial-grade nanowire device fabrication
(Date:7/20/2017)... Fayetteville, AR (PRWEB) , ... July 20, 2017 , ... ... (Jamie) Rogers is joining the company’s board of directors. This addition continues to ... VIC board," said Calvin Goforth, CEO and Chairman. “He is a highly accomplished business ...
(Date:7/20/2017)... ... July 20, 2017 , ... ... clinical trial sites and study participants truly unified. TrialKit, a native mobile app, ... CFR Part 11) research studies entirely on mobile devices. With TrialKit, clinical researchers ...
(Date:7/18/2017)... ... July 18, 2017 , ... G-CON today announced that ... Office for its Patent Applications 14/858,857 and 13/669,785 both entitled Modular, Self-Contained, Mobile ... further expand the protection of G-CON’s R&D investments and validate the G-CON platform ...
(Date:7/17/2017)... ... , ... Whitehouse Laboratories is excited to announce that it ... of ISO 80369 standard test procedures. The ISO 80369 series of eight test ... With this recent expansion, Whitehouse Labs becomes one of the only facilities in ...
Breaking Biology Technology:
(Date:6/14/2017)... IBM ) is introducing several innovative partner startups at ... between startups and global businesses, taking place in ... startups will showcase the solutions they have built with IBM ... France is one of the most ... increase in the number of startups created between 2012 and ...
(Date:5/16/2017)...   Bridge Patient Portal , an enterprise ... EMR Systems , an electronic medical record solutions ... established a partnership to build an interface between ... Centricity™ products, including Centricity Practice Solution (CPS), Centricity ... new integrations will allow healthcare delivery networks using ...
(Date:4/19/2017)... The global military biometrics market ... by the presence of several large global players. The ... major players - 3M Cogent, NEC Corporation, M2SYS Technology, ... 61% of the global military biometric market in 2016. ... military biometrics market boast global presence, which has catapulted ...
Breaking Biology News(10 mins):