Navigation Links
NIST demos industrial-grade nanowire device fabrication

In the growing catalog of nanoscale technologies, nanowirestiny rows of conductor or semiconductor atomshave attracted a great deal of interest for their potential to build unique atomic-scale electronics. But before you can buy some at your local Nano Depot, manufacturers will need efficient, reliable methods to build them in quantity. Researchers at the National Institute of Standards and Technology (NIST) believe they have one solutiona technique that allows them to selectively grow nanowires on sapphire wafers in specific positions and orientations accurately enough to attach contacts and layer other circuit elements, all with conventional lithography techniques. They detailed their results in a recent paper.*

Despite their name, nanowires are more than just electrical connectors. Researchers have used nanowires to create transistors like those used in memory devices and prototype sensors for gases or biomolecules. However working with objects only tens of nanometers wide is challenging. A common approach in the lab is to grow nanowires like blades of grass on a suitable substrate, mow them off and mix them in a fluid to transfer them to a test surface, using some method to give them a preferred orientation. When the carrier fluid dries, the nanowires are left behind like tumbled jackstraws. Using scanning probe microscopy or similar tools, researchers hunt around for a convenient, isolated nanowire to work on, or place electrical contacts without knowing the exact positions of the nanowires. Its not a technique suitable for mass production.

Building on earlier work to grow nanowires horizontally on the surface of wafers (see Gold Nano Anchors Put Nanowires in Their Place), NIST researchers used conventional semiconductor manufacturing techniques to deposit small amounts of gold in precise locations on a sapphire wafer. In a high-temperature process, the gold deposits bead up into nanodroplets that act as nucleation points for crystals of zinc oxide, a semiconductor. A slight mismatch in the crystal structures of zinc oxide and sapphire induces the semiconductor to grow as a narrow nanowire in one particular direction across the wafer. Because the starting points and the growth direction are both well known, it is relatively straightforward to add electrical contacts and other features with additional lithography steps.

As proof of concept, the NIST researchers have used this procedure to create more than 600 nanowire-based transistors, a circuit element commonly used in digital memory chips, in a single process. In the prototype process, they report, the nanowires typical grew in small bunches of up to eight wires at a time, but finer control over the size of the initial gold deposits should make it possible to select the number of wires in each position. The technique, they say, should allow industrial-scale production of nanowire-based devices.


Contact: Michael Baum
National Institute of Standards and Technology (NIST)  

Related biology technology :

1. Comparison of Performance Characteristics of Different Biolistic Devices
2. Measurement of proteasome inhibition in live cells in Molecular Devices microplate fluorometers
3. TomoTherapy to sell medical devices in India
4. Security concerns grow with mobile tech devices
5. Am I spoiled if I expect well-designed mobile devices?
6. Midwest retains dominant role in 2005 world medical device market
7. Students will show off biomedical devices to professors and investors
8. RFID medical devices - Opportunities and challenges
9. State of biotech, medical device sector is focus of upcoming conference
10. Midwest plays key role in developing new medical device companies
11. Medical device industry growing in importance in Midwest
Post Your Comments:
Related Image:
NIST demos industrial-grade nanowire device fabrication
(Date:11/24/2015)... ... November 24, 2015 , ... The United States Golf ... the 2016 USGA Green Section Award. Presented annually since 1961, the USGA Green Section ... her work with turfgrass. , Clarke, of Iselin, N.J., is an extension ...
(Date:11/24/2015)... VANCOUVER , Nov. 24, 2015 /CNW/ - iCo ... ICOTF), today reported financial results for the quarter ... are expressed in Canadian dollars and presented under ... the United States ," said Andrew ... "These advancements regarding iCo-008 are not only value ...
(Date:11/24/2015)... Nov. 24, 2015 /PRNewswire/ - Aeterna Zentaris Inc. (NASDAQ: ... on behalf of the Toronto Stock Exchange, confirms that ... are no corporate developments that would cause the recent ... --> --> About Aeterna Zentaris Inc. ... --> Aeterna Zentaris is a specialty biopharmaceutical ...
(Date:11/24/2015)... ... November 24, 2015 , ... This fall, global software solutions leader SAP ... states to develop and pitch their BIG ideas to improve health and wellness in ... for votes to win the title of SAP's Teen Innovator, an all-expenses paid trip ...
Breaking Biology Technology:
(Date:10/27/2015)... NEW YORK , Oct. 27, 2015 ... the major issues of concern for various industry verticals ... This is due to the growing demand for secure ... practices in various ,sectors, such as hacking of bank ... concerns for electronic equipment such as PC,s, laptops, and ...
(Date:10/27/2015)... Oct. 27, 2015 Synaptics Inc. (NASDAQ: SYNA ... that Google has adopted the Synaptics ® ClearPad ... to power its newest flagship smartphones, the Nexus 5X ... --> --> Synaptics ... provide strategic collaboration in the joint development of next ...
(Date:10/26/2015)... Calif. and LAS VEGAS ... Nok Nok Labs , an innovator in modern authentication ... , today announced the launch of its latest version ... unified platform enabling organizations to use standards-based authentication that ... Nok Nok S3 Authentication Suite is ideal for organizations ...
Breaking Biology News(10 mins):