Navigation Links
NIST demonstrates 'universal' programmable quantum processor

BOULDER, Colo. Physicists at the National Institute of Standards and Technology (NIST) have demonstrated the first "universal" programmable quantum information processor able to run any program allowed by quantum mechanicsthe rules governing the submicroscopic worldusing two quantum bits (qubits) of information. The processor could be a module in a future quantum computer, which theoretically could solve some important problems that are intractable today.

The NIST demonstration, described in Nature Physics,* marks the first time any research group has moved beyond demonstrating individual tasks for a quantum processoras done previously at NIST and elsewhereto perform programmable processing, combining enough inputs and continuous steps to run any possible two-qubit program.

The NIST team also analyzed the quantum processor with the methods used in traditional computer science and electronics by creating a diagram of the processing circuit and mathematically determining the 15 different starting values and sequences of processing operations needed to run a given program. "This is the first time anyone has demonstrated a programmable quantum processor for more than one qubit," says NIST postdoctoral researcher David Hanneke, first author of the paper. "It's a step toward the big goal of doing calculations with lots and lots of qubits. The idea is you'd have lots of these processors, and you'd link them together."

The NIST processor stores binary information (1s and 0s) in two beryllium ions (electrically charged atoms), which are held in an electromagnetic trap and manipulated with ultraviolet lasers. Two magnesium ions in the trap help cool the beryllium ions.

NIST scientists can manipulate the states of each beryllium qubit, including placing the ions in a "superposition" of both 1 and 0 values at the same time, a significant potential advantage of information processing in the quantum world. Scientists also can "entangle" the two qubits, a quantum phenomenon that links the pair's properties even when the ions are physically separated.

With these capabilities, the NIST team performed 160 different processing routines on the two qubits. Although there are an infinite number of possible two-qubit programs, this set of 160 is large and diverse enough to fairly represent them, Hanneke says, making the processor "universal." Key to the experimental design was use of a random number generator to select the particular routines that would be executed, so all possible programs had an equal chance of selection. This approach was chosen to avoid bias in testing the processor, in the event that some programs ran better or produced more accurate outputs than others.

Ions are among several promising types of qubits for a quantum computer. If they can be built, quantum computers have many possible applications such as breaking today's most widely used encryption codes, such as those that protect electronic financial transactions. In addition to its possible use as a module of a quantum computer, the new processor might be used as a miniature simulator for interactions in any quantum system that employs two energy levels, such as the two-level ion qubit systems that represent energy levels as 0s and 1s. Large quantum simulators could, for example, help explain the mystery of high-temperature superconductivity, the transmission of electricity with zero resistance at temperatures that may be practical for efficient storage and distribution of electric power.

The new paper is the same NIST research group's third major paper published this year based on data from experiments with trapped ions. They previously demonstrated sustained quantum information processing ( ion_trap_computers080609.html) and entanglement in a mechanical system similar to those in the macroscopic everyday world ( releases/jost/jost_060309.html). NIST quantum computing research contributes to advances in national priority areas, such as information security, as well as NIST mission work in precision measurement and atomic clocks.

In the latest NIST experiments reported in Nature Physics, each program consisted of 31 logic operations, 15 of which were varied in the programming process. A logic operation is a rule specifying a particular manipulation of one or two qubits. In traditional computers, these operations are written into software code and performed by hardware.

The programs did not perform easily described mathematical calculations. Rather, they involved various single-qubit "rotations" and two-qubit entanglements. As an example of a rotation, if a qubit is envisioned as a dot on a sphere at the north pole for 0, at the south pole for 1, or on the equator for a balanced superposition of 0 and 1, the dot might be rotated to a different point on the sphere, perhaps from the northern to the southern hemisphere, making it more of a 1 than a 0.

Each program operated accurately an average of 79 percent of the time across 900 runs, each run lasting about 37 milliseconds. To evaluate the processor and the quality of its operation, NIST scientists compared the measured outputs of the programs to idealized, theoretical results. They also performed extra measurements on 11 of the 160 programs, to more fully reconstruct how they ran and double-check the outputs.

As noted in the paper, many more qubits and logic operations will be required to solve large problems. A significant challenge for future research will be reducing the errors that build up during successive operations. Program accuracy rates will need to be boosted substantially, both to achieve fault-tolerant computing and to reduce the computational "overhead" needed to correct errors after they occur, according to the paper.

As a non-regulatory agency of the U.S. Department of Commerce, NIST promotes U.S. innovation and industrial competitiveness by advancing measurement science, standards and technology in ways that enhance economic security and improve our quality of life.


Contact: Laura Ost
National Institute of Standards and Technology (NIST)

Related biology technology :

1. WaferGen Announces that University of Texas Southwestern Medical Center Demonstrates Utility of New SmartChip(TM) Nano-Dispenser with WaferGens SmartChip(TM) High-throughput Real-Time PCR System
2. Resverlogix RVX-208 Second Clinical Trial Demonstrates Success on Key Reverse Cholesterol Transport Markers
3. Pittsburgh Life Sciences Greenhouse Demonstrates a Regions Economic Resilience
4. Denosumab Demonstrates Superiority Over Zometa(R) in Delay of Complications Due to Bone Metastases in Advanced Breast Cancer Patients
5. ER Doctor Demonstrates Breast Pump on Live TV with Patented New Freemie Hands-Free System
6. NexBio(R) Demonstrates DAS181 (Fludase(R)*), a Broad-Spectrum Drug Candidate, Inhibits Influenza Viral Infection in Human Lung Tissue
7. Data Published in Cell Stem Cell Demonstrates Potent Anti-Cancer Activity for OncoMed Pharmaceuticals Lead Antibody
8. Abbott HIV Test Demonstrates Earlier Disease Detection
9. BioNeutrals Ygiene(TM) Hospital Grade Antimicrobial Demonstrates a 99.9997% Kill Rate Against Clostridium Difficile Spores (C.diff) in Independent Lab Pre-testing Phase
10. New Pre-Clinical Data on OmniGuides BeamPath NEURO(TM) Demonstrates Precise Cutting in Brain Tissue
11. Phase II Trial Demonstrates Elacytarabine May Increase Survival Threefold in Patients With Late-Stage Leukaemia
Post Your Comments:
Related Image:
NIST demonstrates 'universal' programmable quantum processor
(Date:4/27/2016)... ... 27, 2016 , ... The Pittcon Organizing Committee is pleased to announce that ... volunteer member of Committee since 1987. Since then, he has served in a number ... was chairman for both the program and exposition committees. In his professional career, Dr. ...
(Date:4/27/2016)... British Columbia , April 27, 2016 /PRNewswire/ ... oder "NanoStruck") (CSE: NSK) (OTCPink: NSKQB) ( ... im Anschluss an ihre Pressemitteilung vom 13. August ... erhalten hat, ihre Finanzen um zusätzliche 200.000.000 Einheiten ... 4.000.000 Kanadische Dollar zu bringen. Davon wurden 157.900.000 ...
(Date:4/27/2016)... ... April 27, 2016 , ... ... pleased to announce the appointment of John Tilton as Chief Commercial Officer.  Mr. ... and one of the founding commercial leaders responsible for the commercialization of multiple ...
(Date:4/27/2016)... MD (PRWEB) , ... April 27, 2016 , ... ... Greg Lamka, PhD to its Scientific Advisory Board. Dr. Lamka will assist PathSensors ... plant pathogen detection. , PathSensors deploys the CANARY® test platform for the ...
Breaking Biology Technology:
(Date:3/10/2016)... , March 10, 2016   Unisys Corporation (NYSE: ... Border Protection (CBP) is testing its biometric identity solution ... Diego to help identify certain non-U.S. citizens leaving ... The test, designed to help determine the efficiency and accuracy ... in February and will run until May 2016. --> ...
(Date:3/3/2016)... 3, 2016  FlexTech, a SEMI Strategic Association Partner, ... Research & Development, Leadership in Education, and, in a ... 9 th year of the FLEXI Awards and ... individuals from past years . Judging was done ... set of criteria, by a panel of non-affiliated, independent, ...
(Date:3/1/2016)... , March 1, 2016 ... the addition of the  "Global Biometric ...  report to their offering. --> ... addition of the  "Global Biometric Access ... to their offering. --> ...
Breaking Biology News(10 mins):