Navigation Links
NIH grant ratchets up ASU research in molecular motors
Date:5/31/2011

Empowered by a $1.2 million grant from the National Institutes of Health (NIH), Arizona State University scientist Wayne Frasch is deciphering how one of the world's smallest molecular motors works in living cells. In the process, he is also casting light on a physics puzzle that has perplexed scientists for more than 40 years.

Frasch, a professor in the School of Life Sciences, examines the Fo molecular motor, its mechanism of action and how it partners with the F1 motor as part of the FoF1 ATP synthase. At about 10 nanometers in diameter, each motor is 10,000 times smaller than the width of a piece of paper. In living things, Fo and F1 are attached by a common rotary axel that allows the two motors to work together and supply energy to cells in the form of adenosine triphosphate (ATP).

Research of nanoscale motors is not just complicated by size. Molecular motors operate via extremely small motions that occur on time scales that have been extraordinarily difficult to measure. The Fo molecular motor is also embedded in a living cell's lipid membrane, which is only two molecules thick. Adding to the experimental challenge is the fact that the molecular motors' rotational energy arises from the flow of protons, positively-charged atomic particles, across that membrane.

The Frasch lab is among only a few laboratories equipped to visualize how a single molecule of the Fo motor rotates. Frasch and his ASU College of Liberal Arts and Sciences colleagues have developed an experimental system that embeds the Fo motor in an artificial phospholipid bilayer laid down in nanodiscs, which help to stabilize the molecular complexes. Frasch's group then devised an imaging strategy, using gold nanorods attached to Fo to monitor the rotation of the single FoF1 molecules.

"Knowing more about these tiny, but extraordinarily efficient nearly 100 percent molecular motors offers an avenue to development new technologies, such as power sources for fuel-efficient nanodevices and nanotechnology applications like molecular detection, computing and biomedicine," Frasch says.

One early outcome of Frasch and the ASU team's FoF1 experiments, recently published in EMBO Journal, provides enticing new clues into an old conundrum: a Brownian ratchet first proposed by physicist Richard Feynman more than 40 years ago.

"Previous studies of the Fo motor led researchers to propose that Fo contains a molecular ratchet capable of biasing Brownian motion, the random motion of molecules, in a way that favors rotation in the direction of ATP synthesis," says Frasch. "However, little evidence existed for the type of periodic interruptions in rotation consistent with this type of ratcheting mechanism."

What was known is that the flow of protons across the membrane through Fo channels in a static subunit-"a" drives clockwise rotation of the "c"-ring rotor comprised of 10 c-subunits that each shuttle a single proton. This clockwise rotation in turn drives ATP synthesis, which occurs in the F1 motor because the c-ring attaches to one end of the axle that links units Fo and F1.

Using a gold nanorod attached to the c-ring of a single FoF1 molecule, Frasch's group can examine the motor's rotation in more depth. The group measures changes in light intensity from the gold nanorod as it (and the c-ring) rotates, which allows the ASU team to "see" that the rotary motion of the c-ring is periodically interrupted. "When subunit-a grabbed onto subunit-c, the interaction behaved as a leash, allowing the c-ring to rotate, but at a limit of 36 degree increments while engaged like a ratchet," Frasch says, "This periodic interruption only occurred under conditions in which there was sufficient drag on the nanorod to slow the motor, similar to conditions found in a living cell where ATP is maintained at a high level."

With the new NIH funding, Frasch's School of Life Sciences research group will examine if the leash is a component of the long sought after Browning ratchet. Understanding how or if Brownian motion is harnessed in a molecular ratchet has the potential for use in the development of synthetic molecular motors with low energy consumption and nanoscale energy production.


'/>"/>

Contact: Margaret Coulombe
margaret.coulombe@asu.edu
480-727-8934
Arizona State University
Source:Eurekalert  

Related biology technology :

1. BioDrain Medical, Inc. Granted Canadian Patent for its Streamway® Surgical Fluid Management System
2. Cephalon Granted Temporary Restraining Order in AMRIX® Patent Litigation
3. FDA Grants Fast Track Designation to Bayers Investigational Compound Regorafenib for the Treatment of Gastrointestinal Stromal Tumors
4. LSU-AgCenter and Aquatic Energy Recommended for Clean Technology Grant
5. Larta Institute Receives Award for National Institutes of Health Commercialization Assistance Program at 2011 Acquisition, Grants, and Small Business Symposium
6. Adeonas Multiple Sclerosis Clinical Trial Receives $1,594,553 Grant
7. Eigen Receives Two Grant Awards from U.S. Department of Health & Human Services
8. Morphotek Receives Grant to Support Development of Therapeutic Antibodies against Biowarfare Agents
9. Beijing Chaoyang District Court Grants Investigation Letters Against Inverness Medical Beijing, A Subsidiary of Alere Inc.
10. Cord Blood America: Court Grants Motion to Dismiss at Lawsuit Aimed at Blocking Acquisition
11. Optimer Pharmaceuticals Reports Inducement Grants Under NASDAQ Listing Rule 5635(c)(4)
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
NIH grant ratchets up ASU research in molecular motors
(Date:5/4/2016)... ... 05, 2016 , ... CereScan, the nation’s leader in providing ... National Stroke Awareness Month in May. An infographic created by CereScan will ... CereScan will donate $1 up to a maximum of $3,000 through users who ...
(Date:5/4/2016)... ALBANY, New York , May 4, 2016 /PRNewswire/ ... published by Transparency Market Research "Metabolomics Market - Global ... - 2024", the metabolomics market is anticipated to expand ... to reach USD 2,494.8 million by 2024. ... known as metabolites, within cells, biofluids, tissues or organisms. ...
(Date:5/3/2016)... ... May 03, 2016 , ... In a list published by ... the state’s 76 fastest-growing private companies; a small percentage of the state's 615,000+ small ... on the percent change in revenue from 2012 to 2015. , As ...
(Date:5/3/2016)... -- - And Other Rising Companies - ... Competitor Biologics  - Biosimilar Drug Producers - ... Who are the most important and promising ... sales potentials? Discover, in our updated survey, organisations, outlooks ... revenue forecasting. Visiongain,s new study ...
Breaking Biology Technology:
(Date:3/21/2016)... WAKEFIELD, Massachusetts , March 22, 2016 ... and facial recognition with passcodes for superior security ... MESG ), a leading provider of secure digital communications ... pilot their biometric technology and offer enterprise customers, particularly ... provide secure facial recognition and voice authentication within a ...
(Date:3/17/2016)... ABI Research, the leader in transformative ... market will reach more than $30 billion by ... Consumer electronics, particularly smartphones, continue to boost the ... reach two billion shipments by 2021 at a ... Research Analyst at ABI Research. "Surveillance is also ...
(Date:3/15/2016)... , March 15, 2016 Yissum Research ... the technology-transfer company of the Hebrew University, announced today ... remote sensing technology of various human biological indicators. Neteera ... $2.0 million from private investors. ... on the detection of electromagnetic emissions from sweat ducts, ...
Breaking Biology News(10 mins):