Navigation Links
NIH grant ratchets up ASU research in molecular motors

Empowered by a $1.2 million grant from the National Institutes of Health (NIH), Arizona State University scientist Wayne Frasch is deciphering how one of the world's smallest molecular motors works in living cells. In the process, he is also casting light on a physics puzzle that has perplexed scientists for more than 40 years.

Frasch, a professor in the School of Life Sciences, examines the Fo molecular motor, its mechanism of action and how it partners with the F1 motor as part of the FoF1 ATP synthase. At about 10 nanometers in diameter, each motor is 10,000 times smaller than the width of a piece of paper. In living things, Fo and F1 are attached by a common rotary axel that allows the two motors to work together and supply energy to cells in the form of adenosine triphosphate (ATP).

Research of nanoscale motors is not just complicated by size. Molecular motors operate via extremely small motions that occur on time scales that have been extraordinarily difficult to measure. The Fo molecular motor is also embedded in a living cell's lipid membrane, which is only two molecules thick. Adding to the experimental challenge is the fact that the molecular motors' rotational energy arises from the flow of protons, positively-charged atomic particles, across that membrane.

The Frasch lab is among only a few laboratories equipped to visualize how a single molecule of the Fo motor rotates. Frasch and his ASU College of Liberal Arts and Sciences colleagues have developed an experimental system that embeds the Fo motor in an artificial phospholipid bilayer laid down in nanodiscs, which help to stabilize the molecular complexes. Frasch's group then devised an imaging strategy, using gold nanorods attached to Fo to monitor the rotation of the single FoF1 molecules.

"Knowing more about these tiny, but extraordinarily efficient nearly 100 percent molecular motors offers an avenue to development new technologies, such as power sources for fuel-efficient nanodevices and nanotechnology applications like molecular detection, computing and biomedicine," Frasch says.

One early outcome of Frasch and the ASU team's FoF1 experiments, recently published in EMBO Journal, provides enticing new clues into an old conundrum: a Brownian ratchet first proposed by physicist Richard Feynman more than 40 years ago.

"Previous studies of the Fo motor led researchers to propose that Fo contains a molecular ratchet capable of biasing Brownian motion, the random motion of molecules, in a way that favors rotation in the direction of ATP synthesis," says Frasch. "However, little evidence existed for the type of periodic interruptions in rotation consistent with this type of ratcheting mechanism."

What was known is that the flow of protons across the membrane through Fo channels in a static subunit-"a" drives clockwise rotation of the "c"-ring rotor comprised of 10 c-subunits that each shuttle a single proton. This clockwise rotation in turn drives ATP synthesis, which occurs in the F1 motor because the c-ring attaches to one end of the axle that links units Fo and F1.

Using a gold nanorod attached to the c-ring of a single FoF1 molecule, Frasch's group can examine the motor's rotation in more depth. The group measures changes in light intensity from the gold nanorod as it (and the c-ring) rotates, which allows the ASU team to "see" that the rotary motion of the c-ring is periodically interrupted. "When subunit-a grabbed onto subunit-c, the interaction behaved as a leash, allowing the c-ring to rotate, but at a limit of 36 degree increments while engaged like a ratchet," Frasch says, "This periodic interruption only occurred under conditions in which there was sufficient drag on the nanorod to slow the motor, similar to conditions found in a living cell where ATP is maintained at a high level."

With the new NIH funding, Frasch's School of Life Sciences research group will examine if the leash is a component of the long sought after Browning ratchet. Understanding how or if Brownian motion is harnessed in a molecular ratchet has the potential for use in the development of synthetic molecular motors with low energy consumption and nanoscale energy production.


Contact: Margaret Coulombe
Arizona State University

Related biology technology :

1. BioDrain Medical, Inc. Granted Canadian Patent for its Streamway® Surgical Fluid Management System
2. Cephalon Granted Temporary Restraining Order in AMRIX® Patent Litigation
3. FDA Grants Fast Track Designation to Bayers Investigational Compound Regorafenib for the Treatment of Gastrointestinal Stromal Tumors
4. LSU-AgCenter and Aquatic Energy Recommended for Clean Technology Grant
5. Larta Institute Receives Award for National Institutes of Health Commercialization Assistance Program at 2011 Acquisition, Grants, and Small Business Symposium
6. Adeonas Multiple Sclerosis Clinical Trial Receives $1,594,553 Grant
7. Eigen Receives Two Grant Awards from U.S. Department of Health & Human Services
8. Morphotek Receives Grant to Support Development of Therapeutic Antibodies against Biowarfare Agents
9. Beijing Chaoyang District Court Grants Investigation Letters Against Inverness Medical Beijing, A Subsidiary of Alere Inc.
10. Cord Blood America: Court Grants Motion to Dismiss at Lawsuit Aimed at Blocking Acquisition
11. Optimer Pharmaceuticals Reports Inducement Grants Under NASDAQ Listing Rule 5635(c)(4)
Post Your Comments:
Related Image:
NIH grant ratchets up ASU research in molecular motors
(Date:11/27/2015)... (PRWEB) , ... November 27, 2015 , ... ... Program that includes over 2,000 technical presentations offered in symposia, oral sessions, ... and applied spectroscopy, covers a wide range of applications such as, but not ...
(Date:11/26/2015)... 26, 2015 --> ... in imaging technologies, announced today that it has received a ... the Horizon 2020 European Union Framework Programme for Research and ... trial in breast cancer. , --> ... --> --> The study aims to ...
(Date:11/25/2015)... 25, 2015 2 nouvelles études permettent ... les différences entre les souches bactériennes retrouvées dans la ... des êtres humains . Ces recherches  ouvrent une nouvelle ... prise en charge efficace de l,un des problèmes ... chats .    --> 2 nouvelles études ...
(Date:11/25/2015)... , Nov. 25, 2015  Neurocrine Biosciences, Inc. (Nasdaq: ... , President and CEO of Neurocrine Biosciences, will be ... in New York . ... the website approximately 5 minutes prior to the presentation ... of the presentation will be available on the website ...
Breaking Biology Technology:
(Date:10/29/2015)... 29, 2015 Daon, a global leader in ... released a new version of its IdentityX Platform ... North America have already installed IdentityX v4.0 ... a FIDO UAF certified server component as ... activate FIDO features. These customers include some of the ...
(Date:10/29/2015)... YORK , Oct. 29, 2015 ... technology, announced a partnership with 2XU, a global ... to deliver a smart hat with advanced bio-sensing ... and other athletes to monitor key biometrics to ... the strategic partnership, the two companies will bring together ...
(Date:10/26/2015)... October 26, 2015 ... adds Biometrics Market Shares, ... as well as Emerging Biometrics Technologies: ... to its collection of IT and ... . --> ...
Breaking Biology News(10 mins):