Navigation Links
Molecules on a string, and why size isn't the only thing that matters for data storage
Date:9/14/2009

Molecules of hydrogen are difficult to steer with electric fields because of the symmetrical way that charges are distributed within them. But now researchers at ETH Zurich have found a clever technique to get a grip on the molecules. Their findings are reported in Physical Review Letters and highlighted in the September 14 issue of Physics (http://physics.aps.org).

Electric fields can easily manipulate electrically asymmetric molecules like water, but electric forces can't overcome thermal motions for highly symmetric molecules like H2. In the 1980s, researchers in search of a way to manipulate non-polar molecules proposed a trick: excite one of H2's two electrons into a high orbit, disrupting the molecule's symmetry. The far-flung electron feels the pull of the electric field and drags the rest of the molecule along, rendering H2 as manageable as a puppet on a string.

Now Stephen Hogan, Christian Seiler, and Frederic Merkt at ETH Zurich have made this idea reality by overcoming a key problem: an electron in an excited orbit usually reverts to its ground state long before researchers can take advantage of the molecule's maneuverability. They studied several excited orbits in detail, found the longest-lasting ones, and used lasers to select these special states from a group of hydrogen molecules. The newly manageable molecules could be slowed down and trapped for 50 microseconds, plenty of time for the team to study them in detail.

Size isn't the only thing that matters for data storage

Minute magnetic particles, whether bonded to plastic tape or coated onto a hard disk, are the basis of modern data storage. Information is encoded in the magnetic orientation of these nanoparticles, but particles can sometimes switch orientations spontaneously, which can potentially corrupt data. Now researchers from Lawrence Berkeley and Argonne National Laboratories report that this switching unfolds in a more complicated manner than was previously thought. Their work is published in Physical Review Letters and highlighted in the September 14 issue of Physics (http://physics.aps.org).

Scientists have long known that spin flipping becomes more likely as the size of a nanoparticle cluster dwindles. But Stefan Krause and his team discovered that this is not the end of the story. Flipping happens as a kind of chain reaction along a cluster, and the shape of a cluster can help or hinder this propagation. Manipulating the shape of a cluster and even inserting impurities can determine whether a switch is more or less likely to be triggered and propagate, potentially adding a new dimension of control to the design of magnetic devices.


'/>"/>

Contact: James Riordon
riordon@aps.org
301-209-3238
American Physical Society
Source:Eurekalert  

Related biology technology :

1. Laser pulses control single electrons in complex molecules
2. Designer molecules being developed to fight disease
3. Scientists determine the structure of highly efficient light-harvesting molecules in green bacteria
4. Researchers develop new way to see single RNA molecules inside living cells
5. Heptares Secures GBP21 Million in Series A Fund Raising to Accelerate Development of Pipeline of Small Molecules Against High-Value GPCR Drug Targets
6. New label-free method tracks molecules and drugs in live cells
7. Arisyn Therapeutics Inc. Acquires Highly Novel Portfolio of Therapeutic Small Molecules for Infectious Disease and Cancer
8. Tethered molecules act as light-driven reversible nanoswitches
9. Computer predicts anti-cancer molecules
10. Breakthrough in nanotechnology by uncovering conductive property of carbon-based molecules
11. Method to deliver molecules within embryonic stem cells improves differentiation
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Molecules on a string, and why size isn't the only thing that matters for data storage
(Date:1/19/2017)... SHANGHAI , Jan. 19, 2017 /PRNewswire -- ... medical device open-access capability and technology platform, today ... a leading biology focused preclinical drug discovery contract ... Biosciences will become a wholly-owned subsidiary of WuXi, ... core competences and providing greater services. The acquisition ...
(Date:1/19/2017)... ... January 19, 2017 , ... November Research Group, LLC, ... and medical device manufacturers and regulators, is proud to announce the worldwide release ... client designed to provide product vigilance departments with the flexibility and ease of ...
(Date:1/19/2017)... , Jan. 19, 2017 AquaBounty Technologies, ... on enhancing productivity in aquaculture and a majority-owned subsidiary ... that it has completed the listing of its common ... equity subscription from Intrexon. "AquaBounty,s listing on ... will broaden our exposure to the U.S. markets as ...
(Date:1/19/2017)... ... 2017 , ... FireflySci Inc. is a go-getter type of company that continues ... to two main factors. The first is the amazing customer service that the ... products all around the world. , 2016 was a tremendous sales year for FFS ...
Breaking Biology Technology:
(Date:12/16/2016)... Dec 16, 2016 Research and Markets has ... - Global Forecast to 2021" report to their offering. ... The biometric vehicle ... at a CAGR of 14.06% from 2016 to 2021. The market ... projected to reach 854.8 Million by 2021. The growth of the ...
(Date:12/15/2016)... Advancements in biometrics will radically ... wellbeing (HWW), and security of vehicles by ... vehicles begin to feature fingerprint recognition, iris ... monitoring, brain wave monitoring, stress detection, fatigue ... detection. These will be driven by built-in, ...
(Date:12/8/2016)... 2016  Singulex, Inc., the leader in Next Generation ... a license and supply agreement with Thermo Fisher Scientific, ... Singulex access to Thermo Scientific BRAHMS PCT (Procalcitonin), a ... used to diagnose systemic bacterial infection and sepsis and ... aid in assessing the risk of critically ill patients ...
Breaking Biology News(10 mins):