Navigation Links
Microscope could 'solve the cause of viruses'
Date:3/1/2011

Writing in the journal Nature Communications, the team have created a microscope which shatters the record for the smallest object the eye can see, beating the diffraction limit of light.

Previously, the standard optical microscope can only see items around one micrometre 0.001 millimetres clearly.

But now, by combining an optical microscope with a transparent microsphere, dubbed the 'microsphere nanoscope', the Manchester researchers can see 20 times smaller 50 nanometres ((5 x 10-8m) under normal lights. This is beyond the theoretical limit of optical microscopy.

This hugely-increased capacity means the scientists, led by Professor Lin Li and Dr Zengbo Wang, could potentially examine the inside of human cells, and examine live viruses for the first time to potentially see what causes them.

The existing microscopes which have the capacity to examine tiny items electron microscopes can only see the surface of a cell rather than examining its structure and there is no tool to see a live virus visually.

The scientists, from the School of Mechanical, Aerospace and Civil Engineering, now believe they can use the microscope to detect far smaller images in the future. The new method has no theoretical limit in the size of feature that can be seen.

The new nano-imaging system is based on capturing optical, near-field virtual images, which are free from optical diffraction, and amplifying them using a microsphere, a tiny spherical particle which is further relayed and amplified by a standard optical microscope.

Professor Li, who initiated and led the research in collaboration with academics at the National University and Data Storage Institute of Singapore, believes their research could prove to be an important development.

He said: "This is a world record in terms of how small an optical microscope can go by direct imaging under a light source covering the whole range of optical spectrum.

"Not only have we been able to see items of 50 nanometres, we believe that is just the start and we will be able to see far smaller items.

"Theoretically, there is no limit on how small an object we will be able to see.

"The common way of seeing tiny items presently is with an electron microscope, and even then you cannot see inside a cell only the outside. Optical fluoresce microscopes can see inside the cells indirectly by dying them, but these dyes cannot penetrate viruses.

"Seeing inside a cell directly without dying and seeing living viruses directly could revolutionize the way cells are studied and allow us to examine closely viruses and biomedicine for the first time."

Among other tiny objects the scientists will be able to examine are anodized aluminum oxide nano-structures, and nano-patterns on Blue-Ray CVC disks, not previously visible with an optical microscope.


'/>"/>

Contact: Daniel Cochlin
daniel.cochlin@manchester.ac.uk
0044-161-275-8387
University of Manchester
Source:Eurekalert

Related biology technology :

1. Sharpest microscope tip lands Canadas Nanotech Institute in Guinness Book of World Records
2. Boston College receives W.M. Keck Foundation funding for nanoscale optical microscope
3. New UCLA-designed microscope records firing of thousands of individual neurons in 3-D
4. Pivoting hooks of graphenes chemical cousin could revolutionize work of electron microscopes
5. Researchers use X-ray diffraction microscope to reveal 3-D internal structure of whole cell
6. UCLA researchers use new microscope to see atoms for first time
7. The Latest in Digital USB Microscopes from Cole-Parmer
8. Nikon Corporation Acquires License From Harvard University For STORM Super Resolution Microscopy -- Will Create Innovative New N-STORM Microscope
9. Reportlinker Adds Worldwide Optical, Transmission TEM, and Scanning SEM Electron Microscope Market Shares, Strategies, and Forecasts, 2009 to 2015
10. Under the Microscope: Micro IVF
11. AMG Launches EVOS fl, an 'Evolutionary' Fluorescence Microscope Based on Innovative EVOS Platform
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/23/2016)... June 23, 2016   Boston Biomedical , ... compounds designed to target cancer stemness pathways, announced ... granted Orphan Drug Designation from the U.S. Food ... gastric cancer, including gastroesophageal junction (GEJ) cancer. Napabucasin ... to inhibit cancer stemness pathways by targeting STAT3, ...
(Date:6/23/2016)... -- The Prostate Cancer Foundation (PCF) is pleased to announce 24 new ... prostate cancer. Members of the Class of 2016 were selected from a pool ... Read More About the Class of 2016 PCF Young Investigators ... ... ...
(Date:6/23/2016)... ... 2016 , ... In a new case report published today in STEM CELLS ... developed lymphedema after being treated for breast cancer benefitted from an injection of stem ... with this debilitating, frequent side effect of cancer treatment. , Lymphedema refers ...
(Date:6/23/2016)... ... June 23, 2016 , ... ClinCapture, the only free validated ... will showcase its product’s latest features from June 26 to June 30, 2016 ... on Disrupting Clinical Trials in The Cloud during the conference. DIA (Drug ...
Breaking Biology Technology:
(Date:4/13/2016)... 2016  IMPOWER physicians supporting Medicaid patients in ... clinical standard in telehealth thanks to a new partnership ... platform, IMPOWER patients can routinely track key health measurements, ... index, and, when they opt in, share them with ... a local retail location at no cost. By leveraging ...
(Date:3/31/2016)... , March 31, 2016  Genomics firm Nabsys has ... CEO, Barrett Bready , M.D., who returned to ... the original technical leadership team, including Chief Technology Officer, ... Product Development, Steve Nurnberg and Vice President of Software ... the company. Dr. Bready served as CEO ...
(Date:3/23/2016)... WAKEFIELD, Massachusetts , March 23, 2016 ... kombiniert im Interesse erhöhter Sicherheit Gesichts- und ... Xura, Inc. (NASDAQ: MESG ... heute bekannt, dass das Unternehmen mit SpeechPro ... insbesondere aus der Finanzdienstleistungsbranche, wird die Möglichkeit ...
Breaking Biology News(10 mins):