Navigation Links
Microfluidic devices advance 3-D tissue engineering at Stevens
Date:10/6/2010

A research team, co-headed by Dr. Woo Lee and Dr. Hongjun Wang of Stevens Institute of Technology, has published a paper describing a new method that generates three-dimensional (3D) tissue models for studying bacterial infection of orthopedic implants. Dr. Joung-Hyun Lee of Stevens, and Dr. Jeffrey Kaplan of the New Jersey Dental School, are co-authors of the research. Their paper, appearing in the journal Tissue Engineering, demonstrates a physiologically relevant approach for studying infection prevention strategies and emulating antibiotic delivery using 3D bone tissues cultured in microfluidic devices.

With over 1 million hip and knee replacement procedures being performed in the United States every year, orthopedic implants have become relatively common. Despite advances in implant design, hospitals have been unable to address bacterial infection, the leading cause of failure in orthopedic implants. A significant barrier to successfully developing infection-fighting drugs or biomaterials has been the inadequacy of laboratory equipment to create clinically relevant environment with traditional in vitro methods.

The researchers seeded 0.02 mL microfluidic channels with osteoblasts and inoculated the channels with Staphylococcus epidermis bacteria, a common pathogen in orthopedic infections. Nutrient solutions were pumped through the channels at a concentration and flow rate mimicking conditions within the human body. Bone tissue cells and bacteria within the channels were imaged with a microscope and effluent was analyzed for bacteria count.

Microfluidic devices, together with finely-tuned dynamic flow settings, have the potential to provide realistic bone tissue models in clinical scenarios. As opposed to the static 2D Petri dish surfaces, microfluidic channels present a realistic environment for cells to grow and adhere in three dimensions. Dynamic fluid motion through the channelswith solutions potentially carrying antibiotics or other novel drugsfurther mimics real-world conditions previously unrealizable in a lab setting.


'/>"/>

Contact: Dr. Woo Lee
wlee@stevens.edu
201-216-8307
Stevens Institute of Technology
Source:Eurekalert

Related biology technology :

1. RainDance Technologies to Present Sequence Enrichment Using Droplet-Based Microfluidics Workshop at ASHG 2008
2. GEN Reports on Growing Reliance on Microfluidics Technology
3. Microfluidics Expands Distributorship in Japan with Exclusive POWREX Partnership to Meet Increased Demand in Pharmaceutical, Biotechnology and Energy Industries
4. Nanopoint Applies CE Mark to Its cellTRAY(R) Imaging and Microfluidics Systems
5. MicroFluidic Systems (MFSI) Receives Patent for Method to Selectively Process Different Biological Cell Types for Analysis.
6. Particle Sciences and Microfluidics Collaborate to Share Formulation and Nanotechnology Expertise for Pharmaceutical Drug Product Development, Analysis and Commercialization
7. Microfluidics International Corporation to Report Second Quarter 2009 Financial Results on August 11, 2009
8. Microfluidics International Corporation Announces Second Quarter 2009 Financial Results
9. Microfluidics International Corporation to Report Third Quarter 2009 Financial Results on November 2, 2009
10. Microfluidics International Corporation Announces Third Quarter 2009 Financial Results
11. Microfluidics Chairman James N. Little, Ph.D., Announces Retirement from Board of Directors
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/27/2016)... (PRWEB) , ... June 27, 2016 , ... Parallel ... clinical trials, announced today the Clinical Reach Virtual Patient Encounter CONSULT module ... circle with the physician and clinical trial team. , Using the CONSULT module, patients ...
(Date:6/27/2016)... -- Liquid Biotech USA , Inc. ... Research Agreement with The University of Pennsylvania ("PENN") ... patients.  The funding will be used to assess ... outcomes in cancer patients undergoing a variety of ... to support the design of a therapeutic, decision-making ...
(Date:6/24/2016)... , June 24, 2016 Epic ... sensitively detects cancers susceptible to PARP inhibitors by ... tumor cells (CTCs). The new test has already ... therapeutics in multiple cancer types. Over ... DNA damage response pathways, including PARP, ATM, ATR, ...
(Date:6/23/2016)... ... June 23, 2016 , ... Mosio, a leader in ... Trials Patient Recruitment and Retention Tips.” Partnering with experienced clinical research professionals, Mosio ... practical tips, tools, and strategies for clinical researchers. , “The landscape of how ...
Breaking Biology Technology:
(Date:5/16/2016)... , May 16, 2016   EyeLock LLC , ... announced the opening of an IoT Center of Excellence ... and expand the development of embedded iris biometric applications. ... level of convenience and security with unmatched biometric accuracy, ... identity aside from DNA. EyeLock,s platform uses video technology ...
(Date:5/3/2016)... , May 3, 2016  Neurotechnology, a ... the MegaMatcher Automated Biometric Identification System (ABIS) ... large-scale multi-biometric projects. MegaMatcher ABIS can process multiple ... using any combination of fingerprint, face or iris ... MegaMatcher SDK and MegaMatcher Accelerator , ...
(Date:4/26/2016)... LONDON , April 26, 2016 ... EdgeVerve Systems, a product subsidiary of Infosys (NYSE: ... a partnership to integrate the Onegini mobile security ... (Logo: http://photos.prnewswire.com/prnh/20151104/283829LOGO ) The ... enhanced security to access and transact across channels. ...
Breaking Biology News(10 mins):