Navigation Links
Microbes may be engineered to help trap excess CO2 underground

San Diego, Calif. In H.G. Wells' classic science-fiction novel, The War of the Worlds, bacteria save the Earth from destruction when the Martian invaders succumb to infections to which humans have become immune through centuries of evolution. If a team led by researchers at Lawrence Berkley National Laboratory's Center for Nanoscale Control of Geologic CO2 (NCGC) has its way, bacteria with a little assist from science will help prevent global destruction for real by trapping underground a greenhouse gas, carbon dioxide (CO2 ), that threatens Earth's climate.

The team will discuss its work at the 56th Annual Meeting of the Biophysical Society (BPS) in San Diego, Calif., held Feb. 25-29.

Among the methods being considered for removing excess CO2 (from sources such as power stations) from the atmosphere is transporting the gas into porous rock deep underground. There, it can mineralize with cations (positively charged atoms) to form solid carbonate minerals and become permanently trapped. This mineralization process, however, is extremely slow, sometimes taking hundreds to thousands of years.

Bacteria, the researchers predicted, might help speed things up.

"Previous studies have shown that underground bacteria remain in the rock after CO2 injection. We know these microbes can impact how minerals form, leading us to wonder if they also affect the rate of mineralization," says NCGC biochemist Jenny Cappuccio. "And if bacteria could enhance the nucleation of carbonate minerals, then perhaps we could fine-tune that ability in the laboratory."

Using different surface bacteria as proxies for their deeper-dwelling cousins, the researchers first examined the microbes' effect on calcium carbonate formation, and discovered that all of the species accelerated the process. The rate, they report, was highest in microbes whose surfaces have a thin protein shell known as an S-layer.

"We suspected that the negative charge of the S-layer attracted positive calcium ions and brought them in proximity with carbonate," Cappuccio says.

To test this theory, the researchers engineered artificial S-layers and increased their negative charge by attaching a loop of six amino acids what Cappuccio calls a "loop of negativity." When carbonate was introduced, nucleation was significantly increased.

The next step, Cappuccio says, will be to culture deep subsurface microbes in the lab, make nanoscale changes to increase the negative charge of their surfaces, and see if that "tuning" makes them better able to speed up carbonate nucleation.

The presentation, "Tuning microbial surfaces to control carbonate mineralization," is at 1:45 p.m. on Sunday, Feb. 26, 2012, in the San Diego Convention Center, Hall FGH. ABSTRACT:


Contact: Ellen R. Weiss
American Institute of Physics

Related biology technology :

1. Microbes generate electricity while cleaning up nuclear waste
2. New research reveals soil microbes accelerate global warming
3. Discovery opens the door to electricity from microbes
4. Exposing ZnO nanorods to visible light removes microbes
5. MO BIO Laboratories, Inc. DNA Isolation Products Used to Analyze Microbes Present in Deepwater Horizon Oil Plume
6. Microbes reprogrammed to ooze oil for renewable biofuel
7. Hidden diversity in key environmental cleanup microbes found by systems biology assessment
8. SRNLs microbes useful for for environmental cleanup and oil recovery
9. Microbes, Inc. Extends Warrant Tender Offer
10. Engineered bacteria mop up mercury spills
11. In the battle to relieve back aches, Cornell researchers create bioengineered spinal disc implants
Post Your Comments:
(Date:10/13/2015)... , Oct. 13 2015 Research and ... "US & Europe Markets for Bone Morphogenetic Protein ... to their offering. --> ... that induce the formation of bone after a fracture. ... embryonic development in the formation of the skeleton. There ...
(Date:10/13/2015)... New York , October 13, 2015 ... Growth, Trends, and Forecast 2015 - 2023 " , ... in 2014 and is anticipated to reach US$7.59 bn by 2023, ... 2015 to 2023. --> " Microbiology Culture Market ... - 2023 " , the global microbiology culture ...
(Date:10/13/2015)... ... October 13, 2015 , ... AxioMx Inc. , a ... received a Phase I Small Business Innovative Research (SBIR) grant (1R43GM112204-01A1). This Phase ... Sciences (NIGMS), will fund the development of a technique to rapidly convert single-chain ...
(Date:10/13/2015)... YORK , October 13, 2015 ... acceleration and development company, has entered into a strategic ... York and Paris, France ... --> --> This collaborative arrangement ... highly respected scientific advisory team as well as long ...
Breaking Biology Technology:
(Date:10/12/2015)... October 12, 2015 NXTD ) ("NXT-ID" ... growing mobile commerce market, reports on the recent SNS Future ... . --> NXTD ) ("NXT-ID" or the "Company"), ... market, reports on the recent SNS Future in Review Conference ... NXT-ID, Inc. (NASDAQ: NXTD ) ("NXT-ID" or the ...
(Date:10/8/2015)... Oktober 2015 Die Track Group, ... des Bereiches Tracking, hat heute bekannt gegeben, ... Virginias (Department of Corrections – DOC) unterzeichnet ... alle Strafen geliefert werden, die der Behörde ... für den Amerikanischen Kontinent der Track Group. ...
(Date:10/6/2015)... SALT LAKE CITY , Oct. 6, 2015 /PRNewswire/ ... solutions company, announced today that it has signed a ... electronic monitoring services across the full range of sentences ... Track Group,s President of the Americas. "This contract with ... Eastern region of the US and advances our position ...
Breaking Biology News(10 mins):