Navigation Links
Memoirs of a qubit: Hybrid memory solves key problem for quantum computing
Date:10/22/2008

An international team of scientists has performed the ultimate miniaturisation of computer memory: storing information inside the nucleus of an atom. This breakthrough is a key step in bringing to life a quantum computer - a device based on the fundamental theory of quantum mechanics which could crack problems unsolvable by current technology.

In the quantum world, objects such as atoms are allowed to exist in multiple states simultane-ously -- that is, they could literally be in two places at once or possess a number of other seemingly mutually exclusive properties. Quantum computing is seen as the holy grail of computing because each individual piece of information, or bit, can have more than one value at once, as opposed to current technology which is limited to either 1s or 0s. This yields unprecedented processing power and thus dramatically widens the scope of what computers can do.

The problem: How do you isolate a quantum bit from a noisy environment to protect the deli-cate quantum information, while at the same time allowing it to interact with the outside world so that it can be manipulated and measured?

The team, with scientists and engineers from Oxford and Princeton universities and Lawrence Berkeley National Laboratory, reported a solution to this problem in the Oct. 23 issue of the journal Nature.

The teams plan was to devise a hybrid system using both the electron and nucleus of an atom of phosphorous embedded in a silicon crystal. Each behaves as a tiny quantum magnet capa-ble of storing quantum information, but inside the crystal the electron is more than a million times bigger than the nucleus, with a magnetic field that is a thousand times stronger. This makes the electron well-suited for manipulation and measurement, but not so good for storing information, which can become rapidly corrupted. This is where the nucleus comes in: when the information in the electron is ready for storage, it is moved into the nucleus where it can survive for much longer times.

The experiments were made possible by the use of silicon enriched with the single 28Si iso-tope, painstakingly grown by the Berkeley team into large crystals while keeping the material ultra-pure and free from contaminants.

The electron acts as a middle-man between the nucleus and the outside world. It gives us a way to have our cake and eat it - fast processing speeds from the electron, and long memory times from the nucleus, said John Morton, a research fellow at St. Johns College, Oxford and lead author of the Letter to Nature.

Crucially, the information stored in the nucleus had a lifetime of about 1 and 3/4 seconds, ex-ceeding a recently calculated target for quantum computing in silicon beyond which known error correction techniques could then protect the data for an arbitrarily long period of time. Without this technique the longest researchers had been able to preserve quantum information in silicon was a few tens of milliseconds.

Nobody really knew how long a nucleus might hold quantum information in this system. With the crystals from Lawrence Berkeley and very careful measurements we were delighted to see memory times exceeding the threshold, said Steve Lyon, leader of the Princeton team.

Many different approaches to building a quantum computer are being studied, however one great advantage of the model used here is that it is based on silicon technology, which makes it more compatible with todays computers.


'/>"/>

Contact: Steven Schultz
sschultz@princeton.edu
609-258-3617
Princeton University, Engineering School
Source:Eurekalert

Related biology technology :

1. Hybrid computer materials may lead to faster, cheaper technology
2. Hybrid materials: Exciting interdisciplinary field offering future solutions for industry
3. Hybrid semiconductors show zero thermal expansion; Could lead to hardier electronics
4. DuPont Congratulates Growers Planting Pioneer(R) Brand Sorghum Hybrids in Winning Majority of National Categories in Yield Contest
5. Blanchette Rockefeller Neurosciences Institute Hosts First-Ever International Forum on Memory and Memory Disorders and Dedicates New $30 Million Research Facility
6. Jellyfish Protein Shows Potential to Help With Memory
7. Memory Pharmaceuticals Completes Phase 1 Multiple Ascending Dose Study of R4996/MEM 63908
8. SAFC Hitech(TM) Successfully Demonstrates Device-Quality GST Precursors For Phase Change Memory Applications
9. Memory Pharmaceuticals Closes Final Tranche of Equity Financing with The Stanley Medical Research Institute
10. Memory Pharmaceuticals to Announce Second Quarter 2008 Results on Wednesday, August 13, 2008
11. New kind of MRI enables study of magnets for computer memory
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:12/8/2016)... 2016 AskLinkerReports.com has published a report ... Amyloglucosidase Industry 2016 Market Research Report. From a basic outline ... overview are all covered in the report. This report projects ... analysis of the Amyloglucosidase industry. ... , , ...
(Date:12/8/2016)... , Dec. 8, 2016  Renova™ Therapeutics, ... congestive heart failure and type 2 diabetes, announced ... a novel adeno-associated virus (AAV) vector developed in ... M.D., Ph.D., at Stanford University. The company plans ... paracrine gene therapy product pipeline. ...
(Date:12/8/2016)... CARDIFF, UK (PRWEB) , ... December 08, 2016 ... ... high precision light to control cells — optogenetics — is key to exciting ... state of the art, spatially patterned light projected via free-space optics stimulates small, ...
(Date:12/8/2016)... 2016 Oxford Gene ... seine Palette an anpassbaren SureSeq™ NGS-Panels mit dem ... das ein schnelles und kostengünstiges Studium der Varianten ... eine Erkennung von Einzel-Nukleotid-Variationen (Single Nucleotide Variation, SNV) ... kleinen Panel und ermöglicht eine individuelle Anpassung durch ...
Breaking Biology Technology:
(Date:11/28/2016)... "The biometric system market projected to ... system market is in the growth stage and is ... biometric system market is expected to be valued at ... 16.79% between 2016 and 2022. Government initiative in adoption ... rising use of biometric technology in financial institutes and ...
(Date:11/22/2016)... , Nov. 22, 2016   MedNet Solutions ... the entire spectrum of clinical research, is pleased to ... Medical LiveWire Healthcare and Life Sciences Awards as ... caps off an unprecedented year of recognition and growth ... for over 15 years. iMedNet ...
(Date:11/17/2016)... Global Market Watch: Primarily supported by ... Banks and Academics) market is to witness a value of ... the highest Compounded Annual Growth Rate (CAGR) of 10.75% is ... analysis period 2014-2020. North America is ... Europe at 9.56% respectively. Report ...
Breaking Biology News(10 mins):