Navigation Links
Measurement of 'hot' electrons could have solar energy payoff

Basic scientific curiosity paid off in unexpected ways when Rice University researchers investigating the fundamental physics of nanomaterials discovered a new technology that could dramatically improve solar energy panels.

The research is described in a new paper this week in the journal Science.

"We're merging the optics of nanoscale antennas with the electronics of semiconductors," said lead researcher Naomi Halas, Rice's Stanley C. Moore Professor in Electrical and Computer Engineering. "There's no practical way to directly detect infrared light with silicon, but we've shown that it is possible if you marry the semiconductor to a nanoantenna. We expect this technique will be used in new scientific instruments for infrared-light detection and for higher-efficiency solar cells."

More than a third of the solar energy on Earth arrives in the form of infrared light. But silicon -- the material that's used to convert sunlight into electricity in the vast majority of today's solar panels -- cannot capture infrared light's energy. Every semiconductor, including silicon, has a "bandgap" where light below a certain frequency passes directly through the material and is unable to generate an electrical current. By attaching a metal nanoantenna to the silicon, where the tiny antenna is specially tuned to interact with infrared light, the Rice team showed they could extend the frequency range for electricity generation into the infrared. When infrared light hits the antenna, it creates a "plasmon," a wave of energy that sloshes through the antenna's ocean of free electrons. The study of plasmons is one of Halas' specialties, and the new paper resulted from basic research into the physics of plasmons that began in her lab years ago.

It has been known that plasmons decay and give up their energy in two ways; they either emit a photon of light or they convert the light energy into heat. The heating process begins when the plasmon transfers its energy to a single electron -- a 'hot' electron. Rice graduate student Mark Knight, lead author on the paper, together with Rice theoretical physicist Peter Nordlander, his graduate student Heidar Sobhani, and Halas set out to design an experiment to directly detect the hot electrons resulting from plasmon decay.

Patterning a metallic nanoantenna directly onto a semiconductor to create a "Schottky barrier," Knight showed that the infrared light striking the antenna would result in a hot electron that could jump the barrier, which creates an electrical current. This works for infrared light at frequencies that would otherwise pass directly through the device.

"The nanoantenna-diodes we created to detect plasmon-generated hot electrons are already pretty good at harvesting infrared light and turning it directly into electricity," Knight said. "We are eager to see whether this expansion of light-harvesting to infrared frequencies will directly result in higher-efficiency solar cells."


Contact: David Ruth
Rice University

Related biology technology :

1. The Modern DeBakey VAD™ To Be Introduced For the First Time in the U.S. : HeartAssist 5™ Pediatric VAD Features Industry Exclusive Direct Blood Flow Measurement System
2. GEMS Introduces Ultrasonic Continuous Liquid Level Sensor for Challenging Fluid Measurement
3. Atherotech Receives Patent for ApoB Measurement
4. NISTs LIDAR may offer peerless precision in remote measurements
5. Nano measurement in the third dimension
6. deCODE Finds Genetic Factors Impacting Key Clinical Measurements of Heart Activity and Disease Risk
7. Computerized IVF Follicle Measurements are Faster and Give High Success Rates, Says Research from Chicago Fertility Doctors Richard Sherbahn and Todd Deutch
8. New measurement into biological polymer networks
9. Avalanche photodiodes target bioterrorism agents
10. BioSpace and BayBio announce 2008-2009 Biotech Bay(TM) Hotbed Campaign
11. A snapshot of the transformation
Post Your Comments:
(Date:11/25/2015)... November 26, 2015 ... Market 2016 - 2020 report analyzes that automating ... and quality in long-term samples, minimizing manual errors, ... Automation minimizes manual errors such as mislabeling or ... Further, it plays a vital role in blood ...
(Date:11/25/2015)... -- Neurocrine Biosciences, Inc. (Nasdaq: NBIX ) announced today ... Neurocrine Biosciences, will be presenting at the 27th Annual ... . .   Listeners ... prior to the presentation to download or install any ... available on the website approximately one hour after the ...
(Date:11/25/2015)... ... November 25, 2015 , ... ... were featured on AngelList early in their initial angel funding process. Now, they ... for individuals looking to make early stage investments in the microbiome space. ...
(Date:11/24/2015)... , Nov. 24, 2015 /CNW/ - iCo Therapeutics ("iCo" ... reported financial results for the quarter ended September ... in Canadian dollars and presented under International Financial ... States ," said Andrew Rae , ... regarding iCo-008 are not only value enriching for ...
Breaking Biology Technology:
(Date:11/18/2015)... 18, 2015  As new scientific discoveries deepen our ... other healthcare providers face challenges in better using that ... In addition, as more children continue to survive pediatric ... and old age. John M. Maris, M.D ... of Philadelphia (CHOP) . --> John ...
(Date:11/17/2015)... 17, 2015  Vigilant Solutions announces today that Mr. ... of Directors. --> --> ... from the partnership at TPG Capital, one of the ... $140 Billion in revenue.  He founded and led TPG,s ... TPG companies, from 1997 to 2013.  In his first ...
(Date:11/12/2015)... 2015  Arxspan has entered into an agreement ... for use of its ArxLab cloud-based suite of ... partnership will support the institute,s efforts to electronically ... information internally and with external collaborators. The ArxLab ... the Institute,s electronic laboratory notebook, compound and assay ...
Breaking Biology News(10 mins):