Navigation Links
Making gas out of crude oil
Date:12/12/2007

An international team that includes University of Calgary scientists has shown how crude oil in oil deposits around the world including in Albertas oil sands are naturally broken down by microbes in the reservoir.

Their discovery published in the prestigious science journal Nature could revolutionize heavy oil and oil sands production by leading to more energy-efficient, environmentally friendly ways to produce this valuable resource.

Understanding how crude oil biodegrades into methane, or natural gas, opens the door to being able to recover the clean-burning methane directly from deeply buried, or in situ, oil sands deposits, says Steve Larter, U of C petroleum geologist in the Department of Geoscience who headed the Calgary contingent of the research team.

The oil sands industry would no longer have to use costly and polluting thermal, or heat-based, processes (such as injecting steam into reservoirs) to loosen the tar-like bitumen so it flows into wells and can be pumped to the surface.

The main thing is youd be recovering a much cleaner fuel, says Larter, Canada Research Chair in Petroleum Geology. Methane is, per energy unit, a much lower carbon dioxide emitter than bitumen. Also, you wouldnt need all the upgrading facilities and piping on the surface.

Biodegradation of crude oil into heavy oil in petroleum reservoirs is a problem worldwide for the petroleum industry. The natural process, caused by bacteria that consume the oil, makes the oil viscous, or thick, and contaminates it with pollutants such as sulphur. This makes recovering and refining heavy oil difficult and costly.

Some studies have suggested that biodegradation could by caused by aerobic bacteria, which use oxygen. But Larter and colleagues from the U of C, University of Newcastle in the U.K., and Norsk Hydro Oil & Energy in Norway, report in Nature that the dominant process is, in fact, fermentation. It is caused by anaerobic bacteria that live in oil reservoirs and dont use oxygen.

This is the main process thats occurring all over the Earth, in any oil reservoir where youve got biodegradation, Larter says.

Using a combination of microbiological studies, laboratory experiments and oilfield case studies, the team demonstrated the anaerobic degradation of hydrocarbons to produce methane. The findings offer the potential of feeding the microbes and rapidly accelerating the breaking down of the oil into methane.

Instead of 10 million years, we want to do it 10 years, Larter says. We think its possible. We can do it in the laboratory. The question is: can we do it in a reservoir"

Doing so would revolutionize the heavy oil/oil sands industry, which now manages to recover only about 17 per cent of a resource that consists of six trillion barrels worldwide. Oil sands companies would be able to recover only the clean-burning natural gas, leaving the hard-to-handle bitumen and contaminants deep underground.

Understanding biodegradation also provides an immediate tool for predicting where the less-biodegraded oil is located in reservoirs, enabling companies to increase recovery by targeting higher-quality oil. It gives us a better understanding of why the fluid properties are varying within the reservoir, Larter says. That will help us with thermal recovery processes such as SAGD (steam-assisted gravity drainage).

The research team also discovered an intermediate step in the biodegradation process. It involves a separate family of microbes that produce carbon dioxide and hydrogen from partly degraded oil, prior to it being turned into methane. This paves the way for using the microbes to capture this CO2 as methane, which could then be recycled as fuel in a closed-loop energy system. This would keep the CO2, a greenhouse gas blamed for global warming and climate change, out of the atmosphere.

The petroleum industry already has expressed interest in trying to accelerate biodegradation in a reservoir, Larter says. It is likely there will be field tests by 2009.


'/>"/>

Contact: Mark Lowey
mlowey@ucalgary.ca
403-210-8659
University of Calgary
Source:Eurekalert

Related biology technology :

1. Secure Symbology: Making New Jersey Proud While Saving Lives
2. Thomson Scientific Publishes Who Is Making The Biggest Splash? - A Quarterly Review of Scientific Literature on Drugs and Therapies From April - June 2007
3. Free CME-certified Webcast: Making Your Case: Up-to-date Answers for Developing Trends in PCI
4. Creating the Bionic Woman: Making Nerves Spring Back to Life
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:2/23/2017)... and SAN FRANCISCO , Feb. 23, ... medicine company, and Beyond Type 1, a not-for-profit advocacy ... diabetes, today announced a grant from Beyond Type 1 ... for type 1 and other insulin-requiring diabetes.  ... developing innovative stem cell-derived cell replacement therapies with a ...
(Date:2/22/2017)... -- Aratana Therapeutics, Inc. (NASDAQ: PETX), a pet therapeutics company focused ... for companion animals, will host a live conference call on ... financial results from the fourth quarter and full year ended ... may access the audio webcast or use the ... ...
(Date:2/22/2017)... Clara, CA (PRWEB) , ... February 22, 2017 , ... ... hosting a free AFM Luncheon for all SPIE attendees and ... Jose, CA, just one block from the San Jose Convention Center. The luncheon ...
(Date:2/22/2017)... CINCINNATI , Feb. 22, 2017 Scientists ... drives inflammation and organ damage in Gaucher and maybe ... fewer risks and lower costs than current therapies. ... Children,s Hospital Medical Center , which also included investigators ... , report their data Feb. 22. The study ...
Breaking Biology Technology:
(Date:2/8/2017)... YORK , Feb. 8, 2017 About ... individual,s voice to match it against a stored ... such as pitch, cadence, and tone are compared ... require minimal hardware installation, as most PCs already ... for different transactions. Voice recognition biometrics are most ...
(Date:2/8/2017)... LONDON , Feb. 7, 2017 Report ... $12.5 billion by 2021 from $8.3 billion in 2016 ... from 2016 to 2021. Report Includes - An ... of global market trends, with data from 2015 and ... through 2021. - Segmentation of the market on the ...
(Date:2/6/2017)... Feb. 6, 2017 According to Acuity ... driving border authorities to continue to embrace biometric ... are 2143 Automated Border Control (ABC) eGates and ... at more than 163 ports of entry across ... 2016 achieving a combined CAGR of 37%. APC ...
Breaking Biology News(10 mins):