Navigation Links
Making gas out of crude oil
Date:12/12/2007

An international team that includes University of Calgary scientists has shown how crude oil in oil deposits around the world including in Albertas oil sands are naturally broken down by microbes in the reservoir.

Their discovery published in the prestigious science journal Nature could revolutionize heavy oil and oil sands production by leading to more energy-efficient, environmentally friendly ways to produce this valuable resource.

Understanding how crude oil biodegrades into methane, or natural gas, opens the door to being able to recover the clean-burning methane directly from deeply buried, or in situ, oil sands deposits, says Steve Larter, U of C petroleum geologist in the Department of Geoscience who headed the Calgary contingent of the research team.

The oil sands industry would no longer have to use costly and polluting thermal, or heat-based, processes (such as injecting steam into reservoirs) to loosen the tar-like bitumen so it flows into wells and can be pumped to the surface.

The main thing is youd be recovering a much cleaner fuel, says Larter, Canada Research Chair in Petroleum Geology. Methane is, per energy unit, a much lower carbon dioxide emitter than bitumen. Also, you wouldnt need all the upgrading facilities and piping on the surface.

Biodegradation of crude oil into heavy oil in petroleum reservoirs is a problem worldwide for the petroleum industry. The natural process, caused by bacteria that consume the oil, makes the oil viscous, or thick, and contaminates it with pollutants such as sulphur. This makes recovering and refining heavy oil difficult and costly.

Some studies have suggested that biodegradation could by caused by aerobic bacteria, which use oxygen. But Larter and colleagues from the U of C, University of Newcastle in the U.K., and Norsk Hydro Oil & Energy in Norway, report in Nature that the dominant process is, in fact, fermentation. It is caused by anaerobic bacteria that live in oil reservoirs and dont use oxygen.

This is the main process thats occurring all over the Earth, in any oil reservoir where youve got biodegradation, Larter says.

Using a combination of microbiological studies, laboratory experiments and oilfield case studies, the team demonstrated the anaerobic degradation of hydrocarbons to produce methane. The findings offer the potential of feeding the microbes and rapidly accelerating the breaking down of the oil into methane.

Instead of 10 million years, we want to do it 10 years, Larter says. We think its possible. We can do it in the laboratory. The question is: can we do it in a reservoir"

Doing so would revolutionize the heavy oil/oil sands industry, which now manages to recover only about 17 per cent of a resource that consists of six trillion barrels worldwide. Oil sands companies would be able to recover only the clean-burning natural gas, leaving the hard-to-handle bitumen and contaminants deep underground.

Understanding biodegradation also provides an immediate tool for predicting where the less-biodegraded oil is located in reservoirs, enabling companies to increase recovery by targeting higher-quality oil. It gives us a better understanding of why the fluid properties are varying within the reservoir, Larter says. That will help us with thermal recovery processes such as SAGD (steam-assisted gravity drainage).

The research team also discovered an intermediate step in the biodegradation process. It involves a separate family of microbes that produce carbon dioxide and hydrogen from partly degraded oil, prior to it being turned into methane. This paves the way for using the microbes to capture this CO2 as methane, which could then be recycled as fuel in a closed-loop energy system. This would keep the CO2, a greenhouse gas blamed for global warming and climate change, out of the atmosphere.

The petroleum industry already has expressed interest in trying to accelerate biodegradation in a reservoir, Larter says. It is likely there will be field tests by 2009.


'/>"/>

Contact: Mark Lowey
mlowey@ucalgary.ca
403-210-8659
University of Calgary
Source:Eurekalert

Related biology technology :

1. Secure Symbology: Making New Jersey Proud While Saving Lives
2. Thomson Scientific Publishes Who Is Making The Biggest Splash? - A Quarterly Review of Scientific Literature on Drugs and Therapies From April - June 2007
3. Free CME-certified Webcast: Making Your Case: Up-to-date Answers for Developing Trends in PCI
4. Creating the Bionic Woman: Making Nerves Spring Back to Life
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:10/11/2017)... ... October 11, 2017 , ... Disappearing forests and increased emissions are the ... million people each year. Especially those living in larger cities are affected by air ... one of the most pollution-affected countries globally - decided to take action. , “I ...
(Date:10/10/2017)... ... 10, 2017 , ... For the second time in three ... Mentoring Award. Representatives of the FirstHand program travelled to Washington, D.C. Tuesday, October ... US2020’s mission is to change the trajectory of STEM education in America by ...
(Date:10/10/2017)... , ... October 10, 2017 , ... ... of 13 prestigious awards honoring scientists who have made outstanding ... a scheduled symposium during Pittcon 2018, the world’s leading conference and exposition for ...
(Date:10/9/2017)... , ... October 09, 2017 ... ... on October 5, 2017, in the medical journal, Epilepsia, Brain Sentinel’s SPEAC® ... gold standard, video EEG, in detecting generalized tonic-clonic seizures (GTCS) using surface ...
Breaking Biology Technology:
(Date:5/16/2017)... -- Veratad Technologies, LLC ( www.veratad.com ), an innovative and ... solutions, announced today they will participate as a sponsor ... May 17, 2017, in Washington D.C.,s ... Identity impacts the lives of billions of ... digital world, defining identity is critical to nearly every ...
(Date:5/6/2017)... RAM Group , Singaporean based ... in biometric authentication based on a novel  ... to perform biometric authentication. These new sensors are based on ... Ram Group and its partners. This sensor will have ... and security. Ram Group is a next generation ...
(Date:4/19/2017)... , April 19, 2017 ... its vendor landscape is marked by the presence of ... is however held by five major players - 3M ... these companies accounted for nearly 61% of the global ... leading companies in the global military biometrics market boast ...
Breaking Biology News(10 mins):