Navigation Links
Making cancer less cancerous

Researchers at Johns Hopkins have identified a gene that, when repressed in tumor cells, puts a halt to cell growth and a range of processes needed for tumors to enlarge and spread to distant sites. The researchers hope that this so-called "master regulator" gene may be the key to developing a new treatment for tumors resistant to current drugs.

"This master regulator is normally turned off in adult cells, but it is very active during embryonic development and in all highly aggressive tumors studied to date," says Linda Resar, M.D., an associate professor of medicine, oncology and pediatrics, and affiliate in the Institute for Cell Engineering at the Johns Hopkins University School of Medicine. "Our work shows for the first time that switching this gene off in aggressive cancer cells dramatically changes their appearance and behavior." A description of the experiments appears in the May 2 issue of the journal PLOS ONE.

Resar has been investigating genes in the master regulator's family, known as high mobility group or HMG genes, for two decades. In addition to their role in cancer, these genes are essential for giving stem cells their special powers, and that's no coincidence, she says. "Many investigators consider cancer cells to be the evil twin of stem cells, because like stem cells, cancer cells must acquire special properties to enable the tumor to grow and metastasize or spread to different sites," she explains.

In a previous study , she and her team devised techniques to block the HMGA1 gene in stem cells in order to study its role in those cells. In their prior work, they discovered that HMGA1 is essential for reprogramming adult cells, like blood or skin cells, into stem cells that share most, if not all, properties of embryonic stem cells.

In the newly reported study, the Resar team applied the same techniques to several strains of human breast cancer cells in the laboratory, including the so-called triple negative cells those that lack hormone receptors or HER2 gene amplification. Triple-negative breast cancer cells tend to behave aggressively and do not respond to many of our most effective breast cancer therapies. The Resar team blocked HMGA1 expression in aggressive breast cancer cells and followed their appearance and growth patterns.

"The aggressive breast cancer cells grow rapidly and normally appear spindle-shaped or thin and elongated. Remarkably, within a few days of blocking HMGA1 expression, they appeared rounder and much more like normal breast cells growing in culture," says Resar. The team also found that the cells with suppressed HMGA1 grow very slowly and fail to migrate or invade new territory like their HMGA1-expressing cousins.

The team next implanted tumor cells into mice to see how the cells would behave. The tumors with HMGA1 grew and spread to other areas, such as the lungs, while those with blocked HMGA1 did not grow well in the breast tissue or spread to distant sites.

"From previous work, we know that HMGA1 turns on many different genes needed during very early development, but it's normally turned off by the time we're born," says postdoctoral fellow Sandeep Shah, Ph.D., who led the study. "Flipping that master regulator back on seems to be necessary for a cancer to become highly aggressive, and now we've seen that flipping HMGA1 off again can reverse that aggressive behavior."

The next step, Resar says, is to try to develop a therapy based on that principle. The team is working with other researchers at Johns Hopkins to see whether HMGA1-blocking molecules could be delivered to tumors inside nanoparticles. Another possible approach, she says, would be to block not HMGA1 itself, but one of the pathways or processes that it affects.


Contact: Shawna Williams
Johns Hopkins Medicine

Related biology technology :

1. Decades-old conclusion about energy-making pathway of cyanobacteria is corrected
2. Genomic Health Presents Results From First Clinical Decision Making Study of Oncotype DX® Colon Cancer at the 2012 Gastrointestinal Cancers Symposium
3. Making droplets drop faster
4. The laws of attraction: Making magnetic yeast
5. Charlie Wilson Teams Up With Janssen Biotech to Launch Making Awareness a Priority (M.A.P.)
6. Butamax Granted Core Patent for Making Biobutanol and Distillers Grains; Offers Producers Efficient, Low-Cost Production of Biobutanol
7. Making microscopic machines using metallic glass
8. Making renewable viable
9. 2012 Battalia Winston Survey Finds Corporate Holiday Parties are Making a Comeback
10. Engineer making rechargeable batteries with layered nanomaterials
11. Campbell Alliance to Release New Forward-Looking Industry Report on Deal-Making Trends at the 2013 BIO International Convention
Post Your Comments:
(Date:11/27/2015)... 2015 /PRNewswire/--  Mallinckrodt plc (NYSE: MNK ), ... has closed the sale of its global contrast media ... Euronext) in a transaction valued at approximately $270 million. ... a total of approximately 1,000 employees spread across the ... Louis area. This entire workforce and the ...
(Date:11/26/2015)... England , November 26, 2015 ... innovative medical device company specializing in imaging technologies, announced today ... European Commission as part of the Horizon 2020 European Union ... carry out a large-scale clinical trial in breast cancer. ... (Logo: , --> --> ...
(Date:11/25/2015)... 25, 2015 Studies reveal the ... plaque and pave the way for more effective treatment for ...     --> --> ... health problems in cats, yet relatively little was understood about ... studies have been conducted by researchers from the WALTHAM Centre ...
(Date:11/25/2015)... ... November 25, 2015 , ... ... of Black Aerospace Professionals (OPBAP) has been formalized with the signing of a ... leaders met with OPBAP leaders Capt. Karl Minter and Capt. Albert Glenn Tuesday, ...
Breaking Biology Technology:
(Date:10/29/2015)... 2015  Rubicon Genomics, Inc., today announced an ... its DNA library preparation products, including the ThruPLEX ... Plasma-seq kit. ThruPLEX Plasma-seq has been optimized for ... libraries for liquid biopsies--the analysis of cell-free circulating ... in cancer and other conditions. Eurofins Scientific is ...
(Date:10/27/2015)... Munich, Germany , ... (ASGM) automatically maps data from mobile eye tracking videos ... so that they can be quantitatively analyzed with SMI,s ... Germany , October 28-29, 2015. SMI,s Automated Semantic ... eye tracking videos created with SMI,s Eye Tracking ...
(Date:10/23/2015)... Research and Markets ( ) has announced the ... 2015-2019" report to their offering. ... recognition biometrics market to grow at a CAGR of ... --> The report, Global Voice Recognition Biometrics ... market analysis with inputs from industry experts. The report ...
Breaking Biology News(10 mins):