Navigation Links
Making a point
Date:1/26/2011

Northwestern University researchers have developed a new technique for rapidly prototyping nanoscale devices and structures that is so inexpensive the "print head" can be thrown away when done.

Hard-tip, soft-spring lithography (HSL) rolls into one method the best of scanning-probe lithography -- high resolution -- and the best of polymer pen lithography -- low cost and easy implementation.

HSL could be used in the areas of electronics (electronic circuits), medical diagnostics (gene chips and arrays of biomolecules) and pharmaceuticals (arrays for screening drug candidates), among others.

To demonstrate the method's capabilities, the researchers duplicated the pyramid on the U.S. one-dollar bill and the surrounding words approximately 19,000 times at 855 million dots per square inch. Each image consists of 6,982 dots. (They reproduced a bitmap representation of the pyramid, including the "Eye of Providence.") This exercise highlights the sub-50-nanometer resolution and the scalability of the method.

The results will be published Jan. 27 by the journal Nature.

"Hard-tip, soft-spring lithography is to scanning-probe lithography what the disposable razor is to the razor industry," said Chad A. Mirkin, the paper's senior author. "This is a major step forward in the realization of desktop fabrication that will allow researchers in academia and industry to create and study nanostructure prototypes on the fly."

Mirkin is the George B. Rathmann Professor of Chemistry in the Weinberg College of Arts and Sciences and professor of medicine, chemical and biological engineering, biomedical engineering and materials science and engineering and director of Northwestern's International Institute for Nanotechnology.

Micro- and nanolithographic techniques are used to create patterns and build surface architectures of materials on a small scale.

Scanning probe lithography, with its high resolution and registration accuracy, currently is a popular method for building nanostructures. The method is, however, difficult to scale up and produce multiple copies of a device or structure at low cost.

Scanning probe lithographies typically rely on the use of cantilevers as the printing device components. Cantilevers are microscopic levers with tips, typically used to deposit materials on surfaces in a printing experiment. They are fragile, expensive, cumbersome and difficult to implement in an array-based experiment.

"Scaling cantilever-based architectures at low cost is not trivial and often leads to devices that are difficult to operate and limited with respect to the scope of application," Mirkin said.

Hard-tip, soft-spring lithography uses a soft polymer backing that supports sharp silicon tips as its "print head." The spring polymer backing allows all of the tips to come in contact with the surface in a uniform manner and eliminates the need to use cantilevers. Essentially, hard tips are floating on soft polymeric springs, allowing either materials or energy to be delivered to a surface.

HSL offers a method that quickly and inexpensively produces patterns of high quality and with high resolution and density. The prototype arrays containing 4,750 tips can be fabricated for the cost of a single cantilever-based tip and made in mass, Mirkin said.

Mirkin and his team demonstrated an array of 4,750 ultra-sharp silicon tips aligned over an area of one square centimeter, with larger arrays possible. Patterns of features with sub-50-nanometer resolution can be made with feature size controlled by tip contact time with the substrate.

They produced patterns "writing" with molecules and showed that as the tips push against the substrate the flexible backing compresses, indicating the tips are in contact with the surface and writing is occurring. (The silicon tips do not deform under pressure.)

"Eventually we should be able to build arrays with millions of pens, where each pen is independently actuated," Mirkin said.

The researchers also demonstrated the ability to use hard-tip, soft-spring lithography to transfer mechanical and electrical energy to a surface.


'/>"/>

Contact: Megan Fellman
fellman@northwestern.edu
847-491-3115
Northwestern University
Source:Eurekalert

Related biology technology :

1. Helix BioPharma Completes Definitive GLP Toxicology Studies With L-DOS47 and is Making Final Preparations for its Planned Phase I/II Clinical Study IND/CTA Submissions
2. Graphene 2.0: A new approach to making a unique material
3. New Report Finds A Brain Health Revolution in the Making, Driven by Digital Technology and Neuroplasticity Research
4. OnychoLase Laser Nail Centers Making a Global Impact, By Bringing Western Medicine To The East
5. Wine-making yeast shows promise for bioethanol production
6. A little less force: Making atomic force microscopy work for cells
7. Watching crystals grow provides clues to making smoother, defect-free thin films
8. Disease Management Protocols at Lehigh Valley PPO, Valley Preferred, Making A Difference
9. Bioterrorism and disaster preparedness explored in special issue of Medical Decision Making
10. FLAVORx Helps Families Fight Pandemic H1N1 Influenza Virus By Making Antiviral Medicine Taste Better
11. Making bacteria make useful proteins
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/26/2017)... ... June 26, 2017 , ... Third Wave Bioactives, LLC announces ... Director, focused on leading new business development and ensuring quality customer experience. ... the food ingredient industry in technical, marketing and sales roles. “Brett’s background working with ...
(Date:6/23/2017)... Frederick, MD (PRWEB) , ... June 23, 2017 ... ... laboratory software solutions provider, announced the latest version of LimitLIS®, its rapidly growing ... designed to speed up user adoption, ensure installation integrity, and provide more customization ...
(Date:6/22/2017)... ... June 21, 2017 , ... Beaker, the industry’s pioneer ... the life sciences industry, today announces a strategic partnership with Alcami Corporation, a ... advantage of Beaker’s expertise in executive recruitment solutions, providing Alcami with access to ...
(Date:6/22/2017)... ... June 22, 2017 , ... ... designating infertility as a disease, bringing new hope for prospective parents who are ... annual meeting to back the World Health Organization’s designation in hopes of changing ...
Breaking Biology Technology:
(Date:5/16/2017)... , May 16, 2017   Bridge ... health organizations, and MD EMR Systems , ... development partner for GE, have established a partnership ... Portal product and the GE Centricity™ products, including ... EMR. These new integrations will ...
(Date:4/24/2017)... 2017 Janice Kephart , former ... Strategy Partners, LLP (IdSP) , today issues the ... Trump,s March 6, 2017 Executive Order: Protecting ... can be instilled with greater confidence, enabling the ... refugee applications are suspended by until at least ...
(Date:4/18/2017)... a global expert in SoC-based imaging and computing solutions, has developed ... the company,s hybrid codec technology. A demonstration utilizing TeraFaces ® , ... showcased during the upcoming Medtec Japan at Tokyo Big Sight April ... Vegas Convention Center April 24-27. ... Click here for an image of the M820 ...
Breaking Biology News(10 mins):