Navigation Links
MIT researcher addresses biomedical engineering challenges

CAMBRIDGE, Mass. Much of the work in MIT Institute Professor Robert Langers prolific lab sounds like something straight from the pages of science fiction, but its products are already saving lives around the world in a variety of ways.

One of Langers specialties is growing the vital tissues of the human bodyincluding skin, blood vessels, bone and parts of organs such as the liver and intestinesin a laboratory dish instead of in the body. For example, based on Langers work scientists can grow patches of skin that can be used as grafts for burn victims.

Langer will speak about the great challenges facing biomedical engineering in the next century, at the annual meeting of the American Association for the Advancement of Science (AAAS) in Boston, on Friday afternoon, Feb. 15. The talk is part of a special session announcing a National Academy of Engineering report put together by a committee of 18 leading researchers in a variety of disciplines, including Langer, and reviewed by more than 60 experts. The report, titled Grand Challenges for Engineering, describes the areas of research that are seen as most likely to produce results that could dramatically improve life on Earth.

The report will be unveiled at a press conference at 2 p.m. EST on Friday, Feb. 15, at the AAAS meeting. In addition to Langer, two other MIT scientists were members of the panel and will participate in the press conference: Wesley L. Harris, the Charles Stark Draper Professor of Aeronautics and Astronautics at MIT and a former NASA associate administrator, and MIT President Emeritus Charles Vest, a professor in the Department of Mechanical Engineering.

Among the grand challenges in the area of biomedical engineering, Langer says, is finding new ways of delivering drugs and other large molecules to targeted sites inside the human body.

As part of that research, Langer, who already has more than 600 patents granted or pending, has been working on the development of novel ways to introduce DNA strands into human cells, a necessary step in gene therapy to correct genetic abnormalities or predispositions to disease.

Traditionally, such DNA insertions have been carried out using viruses that have a natural ability to penetrate the cell and insert segments of DNA into the nucleus. But these viruses can sometimes have dangerous side effects, and have been responsible for deaths in some early gene-therapy trials.

Were working on polymers that could deliver DNA as efficiently as viruses, that could put a DNA strand wherever you want, without the safety problems of viruses, Langer says. In addition, they could be cheaper and easier to manufacture.

So far, the problem has been that such synthetic vectors have been far less efficient in carrying out the delivery. But in early tests conducted by Jordan Green and Dan Anderson in Langers lab, some polymers have been as effective at delivering the DNA strands to their target as the viruses, but with 100 times less toxicity.

Such new polymers, Langer says, might eventually lead to new treatments for some kinds of cancer. And they may also enable the delivery of small interfering RNA segments (siRNAs), whose discovery led to a Nobel Prize in 2006. These may be used to combat a variety of diseases.

Anderson, Langer and graduate student Michael Goldberg have also been working on the design of chemicals similar to lipids in the body, called lipidoids that could be used to deliver drugs including siRNA to specific tissues in the body and release them in a controlled way. Already more than 50 promising compounds have been found and are undergoing tests. That work is going quite well, Langer says.

Tissue engineering is another important area of ongoing research, Langer says. One key project is growing replacements for damaged tissues such as the neurons damaged by spinal cord injuries that lead to paralysis. Using a neuronal scaffold, Langer and his collaborators have succeeded in growing new tissue from neuronal stem cells, and have succeeded in helping paralyzed mice to walk again.


Contact: Elizabeth Thomson
Massachusetts Institute of Technology

Related biology technology :

1. Sigma-Aldrich Announces New Prestige Antibodies(TM) Line for Proteomics and Cell Biology Researchers
2. A researcher of UPV/EHU has designed nanomagnets for industry
3. Stanford researchers hear the sound of quantum drums
4. Researchers at Leeds mine the Terahertz gap
5. Researchers create gold aluminum, black platinum, blue silver
6. Leading DHA Expert and Former NIH Researcher, Dr. Norman Salem, Jr., to Join Martek as Chief Scientific Officer
7. Researchers Pinpoint Best Treatment to Reduce Deadly USA300, MRSA Staph Infections
8. Researchers develop darkest manmade material
9. Boost for Malaria Vaccine Development by Combining Strengths of Dutch and American Researchers
10. Researchers use magnetism to target cells to animal arteries
11. Ames Laboratory researchers solve fuel-cell membrane structure conundrum
Post Your Comments:
(Date:11/25/2015)... 26, 2015 --> ... 2016 - 2020 report analyzes that automating biobanking ... quality in long-term samples, minimizing manual errors, improving ... minimizes manual errors such as mislabeling or inaccurate ... it plays a vital role in blood fractionation, ...
(Date:11/25/2015)... 2015  Neurocrine Biosciences, Inc. (Nasdaq: NBIX ) ... CEO of Neurocrine Biosciences, will be presenting at the ... New York . .   ... 5 minutes prior to the presentation to download or ... will be available on the website approximately one hour ...
(Date:11/25/2015)... , ... November 25, 2015 , ... ... uBiome, were featured on AngelList early in their initial angel funding process. Now, ... syndicate for individuals looking to make early stage investments in the microbiome space. ...
(Date:11/24/2015)... 24, 2015 /CNW/ - iCo Therapeutics ("iCo" or "the ... results for the quarter ended September 30, 2015. ... dollars and presented under International Financial Reporting Standards ... ," said Andrew Rae , President & ... are not only value enriching for this clinical ...
Breaking Biology Technology:
(Date:11/4/2015)... 4, 2015 --> ... published by Transparency Market Research "Home Security Solutions Market - ... 2015 - 2022", the global home security solutions market is expected ... 2022. The market is estimated to expand at a ... to 2022. Rising security needs among customers at homes, ...
(Date:10/29/2015)... Daon, a global leader in mobile biometric ... new version of its IdentityX Platform , IdentityX ... have already installed IdentityX v4.0 and are ... FIDO UAF certified server component as an option ... features. These customers include some of the largest and ...
(Date:10/29/2015)... NEW YORK , Oct. 29, 2015 /PRNewswire/ ... wearable technology, announced a partnership with 2XU, a ... accessories, to deliver a smart hat with advanced ... runners and other athletes to monitor key biometrics ... of the strategic partnership, the two companies will bring ...
Breaking Biology News(10 mins):