Navigation Links
MIT: Leveraging learning for artificial respiration
Date:9/11/2007

CAMBRIDGE, MA- MIT researchers have found that the body's innate ability to adapt to recurring stimuli could be leveraged to design more effective and less costly artificial respirators. The new approach could minimize the need for the induced sedation or paralysis currently necessary for some patients on mechanical ventilation.

Nonassociative learning, or our innate ability to adapt to recurring stimuli, is the focus of work to be described in the September 12 issue of PLoS ONE, the online, open-access journal from the Public Library of Science.

Specifically, Chi-Sang Poon, a research scientist at the Harvard-MIT Division of Health Sciences and Technology (HST), and colleagues examined rats under mechanical ventilation to see how they applied different forms of nonassociative learning to adapt to the rhythm imposed by the respirator.

Existing respirators do not consider the adaptive nature of breathing in their design. Some ignore the patient's natural rhythm and pump air in and out of the lungs on set intervals. As a result, doctors often must sedate or paralyze patients to prevent them from fighting an unfamiliar rhythm. Other respirator designs rely entirely on the patient to trigger the airflow. These systems, however, are costly and tend to be unreliable for weak patients such as newborns or those in critical care.

The MIT research suggests, however, that if a doctor takes the patient's natural breathing rhythm into account and sets the ventilator's rhythm in that same range, the patient will adapt and synchronize with the ventilator. This new approach could minimize the need for induced sedation or paralysis.

We have intrinsic nonassociative learning capabilities, called habituation and desensitization, that [can] make up for changes in the spontaneous rhythm due to artificial lung inflation, says Poon.

In tests of rats under artificial respiration, Poon found that, if using a suitable rhythm, rats adapted to the mechanical ventilation. He also found that this learning capability enabled mice to adapt to an artificial rhythm even when the mechanical respirators applied constant air pressure. The rats effectively tuned out this extra pressure, filtering it out as background noise. When Poon disabled the neural pathways involved in nonassociative learning, the rats' ability to adapt was either eliminated or compromised.

Though nonassociative learning is familiar and commonly applied to smelling roses and adjusting to sunlight after emerging from a dark movie theater, it is not usually applied in a clinical environment. Because of their focus on stabilizing patients, clinicians often discount the power of learning. "Many ventilators are designed as if the patient were never in the equation, says Poon. But it turns out, our vital functions can learn to adapt in order to survive.


'/>"/>

Contact: Elizabeth Thomson
thomson@mit.edu
617-258-5402
Massachusetts Institute of Technology
Source:Eurekalert

Related biology technology :

1. Kind approach to leveraging biofuels
2. Distance-Learning Remote Laboratories using LabVIEW
3. Learning from the big boys: With technology, women urged to go gradual
4. Video game learning has no traction in K-12
5. TechnoJungle to highlight learning, innovation
6. Gaming conference explores interactive media in learning
7. Learning to swim in the global talent pool
8. Schmidt rejoins Renaissance Learning
9. Learning how far your message reaches by Googling yourself
10. Charter Business powers distance learning
11. Renaissance Learning CEO resigns to start company
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:10/11/2017)... ... 2017 , ... At its national board meeting in North ... the co-founder, CEO and chief research scientist of Minnesota-based Advanced Space Technology and ... ARCS Alumni Hall of Fame . ASTER Labs is a technology development ...
(Date:10/11/2017)... CA, USA (PRWEB) , ... October 11, 2017 , ... ... to take place on 7th and 8th June 2018 in San Francisco, CA. The ... influencers as well as several distinguished CEOs, board directors and government officials from around ...
(Date:10/11/2017)... the Netherlands and LAGUNA HILLS, Calif. ... The Institute of Cancer Research, London ... use MMprofilerâ„¢ with SKY92, SkylineDx,s prognostic tool to risk-stratify patients ... trial known as MUK nine . The University of ... trial, which is partly funded by Myeloma UK, and ICR ...
(Date:10/11/2017)... (PRWEB) , ... October 11, 2017 , ... ... Administration (FDA) has granted orphan drug designation to SBT-100, its novel anti-STAT3 (Signal ... the treatment of osteosarcoma. SBT-100 is able to cross the cell membrane and ...
Breaking Biology Technology:
(Date:6/23/2017)... and ITHACA, N.Y. , June 23, ... University, a leader in dairy research, today announced a ... to help reduce the chances that the global milk ... of this dairy project, Cornell University has become the ... the Food Supply Chain, a food safety initiative that ...
(Date:5/23/2017)... May 23, 2017  Hunova, the first robotic gym for the rehabilitation ... officially launched in Genoa, Italy . The first 30 ... and the USA . The technology was developed and ... by the IIT spin-off Movendo Technology thanks to a 10 million euro ... Release, please click: ...
(Date:5/16/2017)... , May 16, 2017   Bridge ... health organizations, and MD EMR Systems , ... development partner for GE, have established a partnership ... Portal product and the GE Centricityâ„¢ products, including ... EMR. These new integrations will ...
Breaking Biology News(10 mins):