Navigation Links
Lucky bacteria strike it rich during formation of treatment-resistant colonies
Date:5/8/2013

In biology, we often think of natural selection and survival of the fittest. What about survival of the luckiest?

Like pioneers in search of a better life, bacteria on a surface wander around and often organize into highly resilient communities, known as biofilms. It turns out that a lucky few bacteria become the elite cells that start the colonies, and they organize in a rich-get-richer pattern similar to the distribution of wealth in the U.S. economy, according to a new study by researchers at UCLA, Northwestern University and the University of Washington.

The study, to be published online May 8 in the journal Nature, is the first to identify the strategy by which bacteria form initial colonies in biofilms. The research may have significant implications for battling stubborn bacterial infections that do not respond to powerful drugs, as well as for other applications.

Biofilms are colonies of bacteria that form on surfaces, including human tissue. Bacteria in biofilms change their gene expression patterns and are far more resistant to antibiotics and the body's immune defenses than individual, free-swimming bacteria, because they mass together and surround themselves with a matrix of proteins, DNA and sugars. This makes seemingly routine infections potentially deadly.

Gerard Wong, a professor in the UCLA bioengineering and chemistry departments; Erik Luijten, an associate professor of applied mathematics and of materials science and engineering at Northwestern University; and Matthew R. Parsek, a professor of microbiology at the University of Washington, led a team of researchers who elucidated the early formation of biofilms by using algorithms to track the development of different strains of the bacterium Pseudomonas aeruginosa and by conducting computer simulations to map the movements. P. aeruginosa can cause lethal, difficult-to-treat infections. Examples include infections found in cystic fibrosis and AIDS patients.

Surprisingly, the researchers found that the individual bacteria that start the formation of micro-colonies have no special inherent qualities.

As bacteria move across a surface, they leave trails composed of a specific type of polysaccharide, or long sugar molecules.

"Some of the bacteria remained fixed in position," Parsek said, "but some moved around on the surface, apparently randomly but leaving a trail that influenced the surface behavior of other bacteria that encountered it."

Bacteria arriving later also lay trails, but tend to be guided by the trails from the pioneers. This network of trails creates a process of positive feedback and enables bacteria to organize into micro-colonies that mature into biofilms. By being at the right place at the right time, and by using communally produced polysaccharides, a small number of lucky cells -- often ones that come later -- become the first to form micro-colonies, which give cells many survival advantages over other bacteria.

Interestingly, these biofilms develop in accordance with Zipf's Law, which is one special form of the rich-get-richer phenomena. A well-known example of this is the distribution of wealth in the United States. Recent statistics indicate that the wealthiest 20 percent of the population have more than 80 percent of the total wealth. Most of the wealth in this elite group is in turn owned by a small elite fraction within the elite, and so on.

"It turns out bacteria do the same thing," Wong said. "By effectively taking a census of bacteria using our recently developed methods, we find that the way they organize into micro-colonies is not random, as was previously thought."

Extending the economic analogy, Wong said the research may provide insight into how to fight antibiotic-resistant bacteria. "Typically, when we want to get rid of bacteria, we just kill them with antibiotics," he said. "As a result, they develop defense mechanisms and grow stronger. Maybe that's not always the best way to treat biofilms. Perhaps we can regulate bacterial communities the way we regulate economies. Our work suggests that new treatment options may use incentives and communications as well as punishment to control bacterial communities."

"A truly beautiful aspect of this work is how it relies on a combination of experiments and computer simulations," Luijten said. "Only through combination of the totally different types of expertise of three different research groups has it been possible to disentangle what is going on, and how polysaccharides influence the organization of bacteria into micro-colonies."


'/>"/>

Contact: Megan Fellman
fellman@northwestern.edu
847-491-3115
Northwestern University
Source:Eurekalert

Related biology technology :

1. MU researchers identify key plant immune response in fight against bacteria
2. Sheffield scientists shine a light on the detection of bacterial infection
3. Bacterial protein mops up viruses found in contaminated water supplies
4. Decades-old conclusion about energy-making pathway of cyanobacteria is corrected
5. Manipulating way bacteria talk could have practical applications, Texas A&M profs say
6. Scientists Discover How a Bacterial Pathogen Breaks Down Barriers to Enter and Infect Cells
7. Targeted antibacterial agent rapidly created in response to serious food safety pathogen
8. Cepheid Receives Grant to Develop Sample Processing and Amplification Methods for Detection of Bloodstream Bacteria
9. U Alberta finds weakness in armor of killer hospital bacteria
10. Genetically engineered bacteria prevent mosquitoes from transmitting malaria
11. Modifying surfaces by means of nanostructured reliefs to prevent the spread of bacteria
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/27/2016)... Raleigh, NC (PRWEB) , ... June 27, 2016 ... ... have just published their findings on what they believe could be a new ... summary of the new research. Click here to read it now. ...
(Date:6/27/2016)... , June 27, 2016  Liquid Biotech ... announced the funding of a Sponsored Research Agreement ... circulating tumor cells (CTCs) from cancer patients.  The ... in CTC levels correlate with clinical outcomes in ... These data will then be employed to support ...
(Date:6/24/2016)... ... June 24, 2016 , ... While the majority of commercial spectrophotometers and fluorometers ... the 6000i models are higher end machines that use the more unconventional z-dimension of ... beam from the bottom of the cuvette holder. , FireflySci has developed several ...
(Date:6/23/2016)... , June 23, 2016   Boston Biomedical ... novel compounds designed to target cancer stemness pathways, ... been granted Orphan Drug Designation from the U.S. ... of gastric cancer, including gastroesophageal junction (GEJ) cancer. ... designed to inhibit cancer stemness pathways by targeting ...
Breaking Biology Technology:
(Date:4/26/2016)... DUBLIN , April 27, 2016 ... of the  "Global Multi-modal Biometrics Market 2016-2020"  report ... ) , The analysts forecast ... a CAGR of 15.49% during the period 2016-2020.  ... a number of sectors such as the healthcare, ...
(Date:4/15/2016)... April 15, 2016 Research ... Gait Biometrics Market 2016-2020,"  report to their offering.  ... ) , ,The global gait biometrics market is ... during the period 2016-2020. Gait analysis ... can be used to compute factors that are ...
(Date:3/31/2016)... March 31, 2016   ... or the "Company") LegacyXChange is excited to ... its soon to be launched online site for trading ... ) will also provide potential shareholders a sense ... technology to an industry that is notorious for fraud. ...
Breaking Biology News(10 mins):