Navigation Links
Limit to nanotechnology mass-production?
Date:4/20/2011

A leading nanotechnology scientist has raised questions over a billion dollar industry by boldly claiming that there is a limit to how small nanotechnology materials can be mass produced.

In a paper published today, Thursday, 21 April, in IOP Publishing's journal Nanotechnology, Professor Mike Kelly, Centre for Advanced Photonics and Electronics, University of Cambridge, stated that you cannot mass produce structures with a diameter of three nanometres or less using a top-down approach.

This statement raises a major question concerning the billions of dollars that are poured into nanotechnology each year in the hope that the latest technology developed in the lab can make the transition to a manufactured product on the market.

Nanotechnology is built on the ability to control and manipulate matter at the atomic and molecular level and has far reaching applications including the delivery of drugs into the body, increasing the efficiency of solar panels and improving methods of food packaging.

The overall goal when entering nanotechnologies into the market is low-cost, high-volume manufacturability, but at the same time, the materials' properties must be highly reproducible within a pre-specified limit, which Kelly states cannot happen below the 3nm limit when trying to make arrays.

The top-down approach to manufacturing, which Kelly states is limited, uses external tools to cut and shape large materials to contain many smaller features. Its alternative, the bottom-up approach, involves piecing together small units, usually molecules, to construct whole materials much like a jigsaw puzzle however this process is too unpredictable for defect free mass production of arrays.

Kelly used statistical evaluation of vertical nanopillars - that have been suggested for uses in sensors and displays - as an example to demonstrate his theory. He states that the proof comes in two stages. The first is due to the fact that when materials are mass produced on such a small scale there will be a lot of variation in the size of different components.

As a result of this variation, the properties of the material will vary to an extent where the material cannot function to full capacity within an array.

Professor Kelly says, "If I am wrong, and a counterexample to my theorem is provided, many scientists would be more secure in their continued working, and that is good for science.

"If more work is devoted to the hard problem of understanding just what can be manufactured and how, at the expense of more studies of things that cannot be manufactured under the conditions of the present theorem, then that too is good for science and for technology."


'/>"/>

Contact: Joe Winters
joseph.winters@iop.org
44-207-470-4815
Institute of Physics
Source:Eurekalert

Related biology technology :

1. World TB Day Donation Campaign Increases Access to Improved TB Tests in Resource-Limited Settings
2. Healthzone Limited Engages The Trout Group for Investor Relations Services
3. Earthshaking possibilities may limit underground storage of carbon dioxide
4. Lialda(R) - Shire Files Suit Against Cadila Healthcare Limited, Doing Business as Zydus Cadila and Zydus Pharmaceuticals (USA), Inc.
5. New President and CEO appointed at Ocean Nutrition Canada Limited
6. O2h Continues to Support Senexis to Support Patent Filing Senexis Limited
7. The Independent Committee of the Board of Directors of Tongjitang Appoints Morgan Stanley Asia Limited as Its Financial Advisor
8. Waytronx Announces Agreement for Development and Production of Its GASPT2 Device With UK-Based Ingenion Design Limited
9. DiscoveRx Corp. & Jubilant Biosys Limited Announce Co-Marketing Agreement for Screening Services
10. Bunge Limited to Expand Sugar and Bioenergy Business in Brazil
11. Waukesha Electric partners with SuperPower and UH to build fault current limiting superconducting transformer for Dept. of Energy
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/23/2016)... 2016 /PRNewswire/ - FACIT has announced the creation ... biotechnology company, Propellon Therapeutics Inc. ("Propellon" or "the ... a portfolio of first-in-class WDR5 inhibitors for the ... WDR5 represent an exciting class of therapies, possessing ... for cancer patients. Substantial advances have been achieved ...
(Date:6/23/2016)... -- The Prostate Cancer Foundation (PCF) is pleased to announce 24 new ... prostate cancer. Members of the Class of 2016 were selected from a pool ... Read More About the Class of 2016 PCF Young Investigators ... ... ...
(Date:6/23/2016)... ... ... STACS DNA Inc., the sample tracking software company, today announced that Dr. ... STACS DNA as a Field Application Specialist. , “I am thrilled that Dr. ... STACS DNA. “In further expanding our capacity as a scientific integrator, Hays brings a ...
(Date:6/23/2016)... , June 23, 2016 ... Review, 2016;12(1):22-8 http://doi.org/10.17925/OHR.2016.12.01.22 Published ... the peer-reviewed journal from touchONCOLOGY, Andrew D ... cost of cancer care is placing an increasing ... of expensive biologic therapies. With the patents on ...
Breaking Biology Technology:
(Date:5/16/2016)... NEW YORK , May 16, 2016   ... authentication solutions, today announced the opening of an IoT ... to strengthen and expand the development of embedded ... provides an unprecedented level of convenience and security with ... to authenticate one,s identity aside from DNA. EyeLock,s platform ...
(Date:4/28/2016)... 28, 2016 First quarter 2016:   ... compared with the first quarter of 2015 The gross ... M (loss: 18.8) and the operating margin was 40% (-13) ... Cash flow from operations was SEK 249.9 M (21.2) , ... is unchanged, SEK 7,000-8,500 M. The operating margin for ...
(Date:4/15/2016)... DUBLIN , April 15, 2016 ... of the,  "Global Gait Biometrics Market 2016-2020,"  report ... http://photos.prnewswire.com/prnh/20160330/349511LOGO ) , ,The global gait ... CAGR of 13.98% during the period 2016-2020. ... movement angles, which can be used to compute ...
Breaking Biology News(10 mins):