Navigation Links
Like fish on waves: electrons go surfing
Date:9/22/2011

Physicists at the RUB, working in collaboration with researchers from Grenoble and Tokyo, have succeeded in taking a decisive step towards the development of more powerful computers. They were able to define two little quantum dots (QDs), occupied with electrons, in a semiconductor and to select a single electron from one of them using a sound wave, and then to transport it to the neighbouring QD. A single electron "surfs" thus from one quantum dot to the next like a fish on a wave. Such manipulation of a single electron will in the future also enable the combination of considerably more complex quantum bits instead of classical bits ("0" and "1" states). The researchers have reported their results in Nature, one of the highest-impact-factor international scientific journals.

Semiconductor physics: a fisherman's dream

Electrons can move as freely as fish in water in electric conductors (metals) and semiconductors such as silicon (Si) or gallium arsenide (GaAs), albeit not "swimming" of their own but moving owing to differences in voltage. Inside a metal, they are present as a huge number of fish that fill nearly the entire volume of water. In semiconductors, this "fish density" is not as high and so the distance between the electrons (fish) is much larger. The electrons can be concentrated in a thin layer near the surface by the application of an external voltage. The new method that the international team of researchers has developed now fulfils this "fisherman's dream" for semiconductor physicists. The electron "fish" are all in one layer close to the surface and easily, individually accessible from the surface.

Fishing one from the quantum dot

Prof. Andreas Wieck, physicist at the RUB, points out that there are, however no, "big fish," all electrons being similar and even always identical, undistinguishable objects. The method that the researchers from Germany, France and Japan used, nevertheless enables the "emission" of individual electrons from the QD, moving them over a specific distance and then detecting them at the neighbouring QD. A distance of four micrometres (μm) was used in the experiment this is twenty times larger than a highly integrated transistor. Targeted transport of individual electrons is possible in the following way: First, a QD is defined between the tips of four electrodes to form this zero-dimensional object, containing some hundred electrons. The scientists subsequently send a sound wave along the semiconductor surface using interdigital (like two combs fitted together without touching each other) electrodes to which they apply a radio frequency voltage. This method functions in the opposite way as the electrical discharge of a piezo ignition system in which a crystal is deformed to attain a voltage. The researchers applied voltage to the crystal and thus deform it, and the alternating voltage leads to the formation of a sound wave.

The fish surfs on the wave

In a sample, this wave moves, for example, from left to right through the quantum dot at the velocity of sound inside the crystal at three kilometres per second. Its height is adjusted so that it extracts exactly one "fish" from it. The latter subsequently surfs on the wave in a one-dimensional channel. The "fish" arrives at the neighbouring quantum dot 4 μm to the right thereof. The researchers were able to attain good statistics by repetition of the waves and measurements and thus capable of determining the reliability of the method. During the first experiments, the probability of emission and detection of a single electron with the wave was 96 and 92%, respectively.

The innovation: aligning the fish

It is not possible to differentiate between the electrons "fish", but they can be differently aligned because they rotate like little spinning tops. This is called the "spin" of the electron. For example one can align a fish with "its head upwards," let it be transported with the wave, and then detect it again at the target quantum dot still having "its head upwards." The time for the spin to change is longer than the surfing time on the wave, so the probability of this occurring is very high. The quantum bits of the future will also consist of such spin-polarized electrons. The researchers attained their results with samples prepared by so-called molecular beam epitaxy at the chair of Applied Solid State Physics at the Ruhr University Bochum. They were structured in Tokyo and subsequently measured in Grenoble. But not only the samples, also a further development of this concept originates from Bochum: Prof. Wieck already published his vision of an electron directional coupler with two parallel one-dimensional channels, in which the electrons can skip from one to the other channel, 21 years ago. The research team has in the meantime realized this vision based on the results presented here. A further publication is therefore to follow shortly.


'/>"/>

Contact: Prof. Dr. Andreas Wieck
andreas.wieck@rub.de
49-234-322-6726
Ruhr-University Bochum
Source:Eurekalert

Related biology technology :

1. Material created at Purdue lets electrons dance and form new state
2. Scientists shed light on the private lives of electrons
3. At small scales, tug-of-war between electrons can lead to magnetism
4. Measurement of hot electrons could have solar energy payoff
5. Pitt-led researchers create super-small transistor, artificial atom powered by single electrons
6. Princeton scientists find unusual electrons that go with the flow
7. Stretching single molecules allows precision studies of interacting electrons
8. Elusive hot electrons captured in ultra-thin solar cells
9. Laser pulses control single electrons in complex molecules
10. Latest issue of Science: Nanosonar uses electrons to measure under the surface
11. Latest issue of Science: Nano-sonar uses electrons to measure under the surface
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/23/2016)... June 23, 2016 /PRNewswire/ - FACIT has announced ... biotechnology company, Propellon Therapeutics Inc. ("Propellon" ... commercialization of a portfolio of first-in-class WDR5 inhibitors ... such as WDR5 represent an exciting class of ... precision medicine for cancer patients. Substantial advances have ...
(Date:6/23/2016)... 23, 2016  The Biodesign Challenge (BDC), a university ... to harness living systems and biotechnology, announced its winning ... New York City . ... showcased projects at MoMA,s Celeste Bartos Theater during the ... MoMA,s senior curator of architecture and design, and ...
(Date:6/23/2016)... Ky. , June 23, 2016 ... two Phase 1 clinical trials of its complement ... placebo-controlled, single and multiple ascending dose studies designed ... pharmacodynamics (PD) of subcutaneous injection in healthy adult ... subcutaneously (SC) either as a single dose (ranging ...
(Date:6/23/2016)... ... 23, 2016 , ... Regulatory Compliance Associates® Inc. (RCA), a ... webinar on Performing Quality Investigations: Getting to Root Cause. This ... charge. , Incomplete investigations are still a major concern to the Regulatory Authorities ...
Breaking Biology Technology:
(Date:5/20/2016)... -- VoiceIt is excited to announce its new marketing ... working together, VoiceIt and VoicePass will offer an ... slightly different approaches to voice biometrics, collaboration between ... Both companies ... "This marketing and technology partnership allows VoiceIt ...
(Date:5/12/2016)... 2016 WearablesResearch.com , a brand of ... results from the Q1 wave of its quarterly wearables ... consumers, receptivity to a program where they would receive ... insurance company. "We were surprised to see ... Michael LaColla , CEO of Troubadour Research, "primarily because ...
(Date:5/3/2016)... 2016  Neurotechnology, a provider of high-precision biometric ... Biometric Identification System (ABIS) , a complete system ... ABIS can process multiple complex biometric transactions with ... fingerprint, face or iris biometrics. It leverages the ... MegaMatcher Accelerator , which have been used ...
Breaking Biology News(10 mins):