Navigation Links
Learning from origami to design new materials
Date:8/7/2014

AMHERST, Mass. -- A challenge increasingly important to physicists and materials scientists in recent years has been how to design controllable new materials that exhibit desired physical properties rather than relying on those properties to emerge naturally, says University of Massachusetts Amherst physicist Christian Santangelo.

Now he and physicist Arthur Evans and polymer scientist Ryan Hayward at UMass Amherst, with others at Cornell and Western New England University, are using origami-based folding methods for "tuning" the fundamental physical properties of any type of thin sheet, which may eventually lead to development of molecular-scale machines that could snap into place and perform mechanical tasks. Results are reported today in an early online edition of Science.

At a physics meeting a couple of years ago, Santangelo mentioned the unusual properties of a special type of origami fold called Miura-ori to fellow physicist Jesse Silverberg of Cornell, a long-time origami enthusiast. Miura-ori, named after the astrophysicist who invented the technique, is a series folded parallelograms that change the stiffness of a sheet of paper based only on the crease pattern.

Also known as tessellation, this special folding, which occurs naturally in some leaves and tissues, arranges a flat surface using a repeated pattern of alternating mountain-and-valley zigzag folds. Objects folded this way contract when squeezed, a bit like an accordion, so they can be packed into a very small shape but unfolded with little effort from the corners. This technique has been used in space to launch satellites with solar arrays that can be unfolded using only a few small motors at the edges.

Santangelo explains, "As you compress most materials along one axis, they expand in other directions. In other words, squeezing a hunk of material causes it to leak out the sides. A rare class of materials, however, does the opposite. If you compress them along one direction, they collapse uniformly in all directions. Miura-ori shows us how to use this property to make new devices. Exotic materials can be formed from traditional materials simply by altering microscopic structure."

Santangelo, with Silverberg and Itai Cohen at Cornell and Tom Hull at Western New England, describe in their new paper how to alter patterns and introduce defects to tune a thin sheet's stiffness and create a material in which physical properties can be programmed and reprogrammed.

Silverberg says, "The work brings together origami, metamaterials, programmable matter crystallography and more. It's totally bizarre and unique to have so many of these ideas intersecting at the same time."

Santangelo says active materials can change their shape, size, and/or physical properties with changes in temperature, pressure, electro-magnetic fields, or other aspects of their environment. With such materials, researchers may be able to create entire structures and systems out of single pieces that are flexible, elastic and resilient.

Santangelo adds, "In particular, this gives us the ability to make a reprogrammable material. By toggling elements of the origami structure between two stable states, we can make the structure stiffer, selectively weaken certain parts, and so on. And we can do it reversibly. Given origami's scale-free geometric character, this framework for metamaterial design can be directly transferred to milli-, micro- and nanometer size systems."

He adds that metamaterials are rapidly emerging at the frontier of scientific and technological innovation due to their exotic and tunable material properties, which arise from arrangements of smaller units within the bulk system to generate exotic, non-natural properties on larger scales. Miura-ori can be considered a mechanical metamaterial because its stiffness can be controlled by the specific fold angles of the parallelograms, Silverberg explains.

The physicists point out that is rare to find metamaterials that can be reconfigured beyond their original design, but origami-inspired mechanical metamaterials offer enhanced flexibility because their properties are linked to alterable folding pattern. So-called "pop-through defects" made by changing crease directions, can be introduced to change a sheet's stiffness, so multiple stable configurations can come from a single structure yielding programmable metamaterials.

Using numerical simulations, Evans and Santangelo calculated the effect that a pop-through defect has on Miura-ori. They showed that it instantly makes the entire sheet stiffer, and the effect is additive. The Cornell group will present this research at the Sixth International Meeting on Origami in Science, Mathematics and Education on Aug. 10 in Tokyo.


'/>"/>
Contact: Janet Lathrop
jlathrop@admin.umass.edu
413-545-0444
University of Massachusetts at Amherst
Source:Eurekalert  

Related biology technology :

1. SoundConnect Enhances Portfolio with Adobe Connect Learning Management System (LMS)
2. Franz Och, Ph.D., Expert in Machine Learning and Machine Translation, Joins Human Longevity, Inc. as Chief Data Scientist
3. Tute Genomics Raises $1.5M for Cloud-based Genome Analytics & Machine-learning for Gene Discovery
4. New 2 Hour Educational Learning Labs at MD&M West Will Feature Baxter Bioscience, BMW, Dell, GE Healthcare, Mattel, Northrup Grumman, Starbucks and Other Leading Groups in Design, Manufacturing, Engineering and Automation
5. Elsevier Introduces Adaptive Study Solution for Improved Learning and Memory Retention for Nursing and Health Professions
6. ISPE Launches New Expanded E-Learning Courses
7. UMBC’s ISD Now Webinar Series – The Top 10 Blunders in Developing eLearning... and How to Avoid Them, September 24, 2013
8. Sales Momentum and Blue Pacific Sales Training Partner in Exciting New E-Learning Sales Training
9. Atomic Learning Takes Education on the Road with Formulate Fabric Displays from GLM Displays
10. Vivid Learning Systems Announces Newly Designed Industry Websites for MSHA, Electrical Utility Safety, Healthcare and OSHA Compliance
11. CLD Integrates Tin CAN API with its eLearning Solutions and Launches its Excelerometer Tracking Statement Dashboard
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Learning from origami to design new materials
(Date:6/24/2016)... discussions on a range of subjects including policies, debt and ... Poloz. Speaking at a lecture to the Canadian ... to the country,s inflation target, which is set by both ... "In certain areas there needs to be ... why not sit down and address strategy together?" ...
(Date:6/23/2016)... (PRWEB) , ... June 23, 2016 , ... ... is pleased to announce the launch of their brand, UP4™ Probiotics, into Target ... over 35 years, is proud to add Target to its list of well-respected ...
(Date:6/23/2016)... ... 23, 2016 , ... Charm Sciences, Inc. is pleased to ... AOAC Research Institute approval 061601. , “This is another AOAC-RI approval of the ... Vice President of Regulatory and Industrial Affairs. “The Peel Plate methods perform comparably ...
(Date:6/23/2016)... ... June 23, 2016 , ... STACS DNA Inc., the sample tracking software company, ... Crime Laboratory, has joined STACS DNA as a Field Application Specialist. , “I ... President and COO of STACS DNA. “In further expanding our capacity as a scientific ...
Breaking Biology Technology:
(Date:5/20/2016)... , May 20, 2016  VoiceIt is excited ... with VoicePass. By working together, VoiceIt ...  Because VoiceIt and VoicePass take slightly different approaches ... increases both security and usability. ... about this new partnership. "This marketing ...
(Date:5/3/2016)... May 3, 2016  Neurotechnology, a provider of ... MegaMatcher Automated Biometric Identification System (ABIS) , a ... projects. MegaMatcher ABIS can process multiple complex biometric ... combination of fingerprint, face or iris biometrics. It ... and MegaMatcher Accelerator , which have ...
(Date:4/26/2016)... 27, 2016 Research and ... Biometrics Market 2016-2020"  report to their offering.  , ... The analysts forecast the global multimodal biometrics ... during the period 2016-2020.  Multimodal biometrics ... such as the healthcare, BFSI, transportation, automotive, and ...
Breaking Biology News(10 mins):