Navigation Links
Laser light at useful wavelengths from semiconductor nanowires
Date:12/5/2013

Thread-like semiconductor structures called nanowires, so thin that they are effectively one-dimensional, show potential as lasers for applications in computing, communications, and sensing. Scientists at the Technische Universitaet Muenchen (TUM) have demonstrated laser action in semiconductor nanowires that emit light at technologically useful wavelengths and operate at room temperature. They now have documented this breakthrough in the journal Nature Communications and, in Nano Letters, have disclosed further results showing enhanced optical and electronic performance.

"Nanowire lasers could represent the next step in the development of smaller, faster, more energy-efficient sources of light," says Prof. Jonathan Finley, director of TUM's Walter Schottky Institute. Potential applications include on-chip optical interconnects or even optical transistors to speed up computers, integrated optoelectronics for fiber-optic communications, and laser arrays with steerable beams. "But nanowires are also a bit special," Finley adds, "in that they are very sensitive to their surroundings, have a large surface-to-volume ratio, and are small enough, for example, to poke into a biological cell." Thus nanowire lasers could also prove useful in environmental and biological sensing.

These experimental nanowire lasers emit light in the near-infrared, approaching the "sweet spot" for fiber-optic communications. They can be grown directly on silicon, presenting opportunities for integrated photonics and optoelectronics. And they operate at room temperature, a prerequisite for real-world applications.

Tailored in the lab, with an eye toward industry

Tiny as they are a thousand times thinner than a human hair the nanowire lasers demonstrated at TUM have a complex "core-shell" cross-section with a profile of differing semiconductor materials tailored virtually atom by atom.

The nanowires' tailored core-shell structure enables them to act both as lasers, generating coherent pulses of light, and as waveguides, similar to optical fibers. Like conventional communication lasers, these nanowires are made of so-called III-V semiconductors, materials with the right "bandgap" to emit light in the near-infrared. A unique advantage, Finley explains, is that the nanowire geometry is "more forgiving than bulk crystals or films, allowing you to combine materials that you normally can't combine." Because the nanowires arise from a base only tens to hundreds of nanometers in diameter, they can be grown directly on silicon chips in a way that alleviates restrictions due to crystal lattice mismatch thus yielding high-quality material with the potential for high performance.

Put these characteristics together, and it becomes possible to imagine a path from applied research to a variety of future applications. A number of significant challenges remain, however. For example, laser emission from the TUM nanowires was stimulated by light as were the nanowire lasers reported almost simultaneously by a team at the Australian National University yet practical applications are likely to require electrically injected devices.

Nanowire lasers: a technological frontier with bright prospects

The newly published results are largely due to a team of scientists who are beginning their careers, under the guidance of Dr. Gregor Koblmueller and other senior researchers, at the frontier of a new field. Doctoral candidates including Benedikt Mayer, Daniel Rudolph, Stefanie Morktter and Julian Treu combined their efforts, working together on photonic design, material growth, and characterization using electron microscopy with atomic resolution.

Ongoing research is directed toward better understanding the physical phenomena at work in such devices as well as toward creating electrically injected nanowire lasers, optimizing their performance, and integrating them with platforms for silicon photonics.

"At present very few labs in the world have the capability to grow nanowire materials and devices with the precision required," says co-author Prof. Gerhard Abstreiter, founder of the Walter Schottky Institute and director of the TUM Institute for Advanced Study. "And yet," he explains, "our processes and designs are compatible with industrial production methods for computing and communications. Experience shows that today's hero experiment can become tomorrow's commercial technology, and often does."


'/>"/>

Contact: Patrick Regan
patrick.regan@tum.de
49-016-242-79876
Technische Universitaet Muenchen
Source:Eurekalert  

Related biology technology :

1. DEPS Laser Conferences to Co-locate with SPIE DSS in Baltimore Next May
2. New Cold Laser Pain Therapy Treatments That Effectively Treats Injuries and Chronic Pain, Courtesy of Elan Wellness Center, and Its Outstanding Chiropractic Practitioner
3. The worlds most powerful terahertz quantum cascade laser
4. Elan Wellness Center Announces Theralase Therapeutic Laser Treatment is Now Available
5. Pearly Whites Laser Dentistry Launches Ground Breaking Cavity Prevention Program that Can Lower Decay Rates by 74%
6. New Techniques Use Lasers, LEDs, and Optics to ‘See’ Under the Skin
7. Pittsburgh Life Sciences Greenhouse Makes Strategic Adjustment To Put Laser Focus On 2013 Goals
8. Laser Damage Experts to Converge in Boulder for 45th Meeting in SPIE-Sponsored Series
9. Centre for Sight First in the United Kingdom to Utilize TrueVision® 3D Visualization During Femtosecond Laser Cataract Surgery
10. Dual-color lasers could lead to cheap and efficient LED lighting
11. Germanium made laser compatible
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Laser light at useful wavelengths from semiconductor nanowires
(Date:6/23/2016)... Connecticut (PRWEB) , ... June 23, 2016 , ... ... introduce a new line of intelligent tools designed, tuned and optimized exclusively for ... September 12–17 in Chicago. The result of a collaboration among several companies with ...
(Date:6/22/2016)... Cell Applications, Inc. and StemoniX announced ... up to one billion human induced pluripotent stem ... These high-quality, consistent stem cells enable researchers to ... more time doing meaningful, relevant research. This achievement ... process that produces affordable, reliable HiPSC for life ...
(Date:6/22/2016)... June 22, 2016   StockNewsNow.com , The Official ... with Dr. Nader Pourhassan , President & CEO ... on the clinical development and potential commercialization of humanized ... infection, according to the company,s website (see here: ... June 7 th , 2016, at the LD Micro ...
(Date:6/22/2016)... ... 21, 2016 , ... New light-based technologies that facilitate a “look inside” the ... enable both compact, wearable devices for point-of-care diagnostics as well as powerful new systems ... work and visionary future directions are detailed in a new open-access article by Antonio ...
Breaking Biology Technology:
(Date:3/23/2016)... , March 23, 2016 ... erhöhter Sicherheit Gesichts- und Stimmerkennung mit Passwörtern ... (NASDAQ: MESG ), ein führender ... das Unternehmen mit SpeechPro zusammenarbeitet, um erstmals ... Finanzdienstleistungsbranche, wird die Möglichkeit angeboten, im Rahmen ...
(Date:3/22/2016)... OTTAWA, Ontario , PROVO ... 2016 Newborn Screening Ontario (NSO), which operates ... for molecular testing, and Tute Genomics and ... process management technology respectively, today announced the launch of ... new next-generation sequencing (NGS) testing panel. ...
(Date:3/18/2016)... , March 18, 2016 ... Suppliers of Biometrics, ICT, Manned & Unmanned Vehicles, Physical infrastructure ... & security companies in the border security market and the ... and Europe has led visiongain ... companies improved success. --> defence & security ...
Breaking Biology News(10 mins):