Navigation Links
Knee brace generates electricity from walking
Date:2/7/2008

This release is available in Spanish.

ANN ARBOR, Mich.---A new energy-capturing knee brace can generate enough electricity from walking to operate a portable GPS locator, a cell phone, a motorized prosthetic joint or an implanted neurotransmitter, research involving the University of Michigan shows.

A report on the device is published in the Feb. 8 issue of the journal Science. Authors include researchers from Simon Fraser University in Canada and the University of Pittsburgh, in addition to U-M.

The wearable mechanism works much like regenerative braking charges a battery in some hybrid vehicles, said Arthur Kuo, an associate professor of mechanical engineering at U-M and an author of the paper.

Regenerative brakes collect the kinetic energy that would otherwise be dissipated as heat when a car slows down. This knee brace harvests the energy lost when a human brakes the knee after swinging the leg forward to take a step.

Kuo, who called the device "a cocktail-napkin idea," says knee joints are uniquely suited for this endeavor.

"There is power to be harvested from various places in the body, and you can use that to generate electricity. The knee is probably the best place," he said. "During walking, you dissipate energy in various places, when your foot hits the ground, for example. You have to make up for this by performing work with your muscles.

"The body is clever," Kuo said. "In a lot of places where it could be dissipating energy, it may actually be storing it and getting it back elastically. Your tendons act like springs. In many places, we're not sure whether the energy is really being dissipated or you're just storing it temporarily. We believe that when you're slowing down the knee at the end of swinging the leg, most of that energy normally is just wasted."

The scientists tested the knee brace on six men walking leisurely on a treadmill at 1.5 meters per second, or 2.2 miles per hour. They measured the subjects' respiration to determine how hard they were working. A control group wore the brace with the generator disengaged to measure how the weight of the 3.5-pound brace affected the wearer.

In the mode in which the brace is only activated while the knee is braking, the subjects required less than one watt of extra metabolic power for each watt of electricity they generated. A typical hand-crank generator, for comparison, takes an average of 6.4 watts of metabolic power to generate one watt of electricity because of inefficiencies of muscles and generators.

"We've demonstrated proof of concept," Kuo said. "The prototype device is bulky and heavy, and it does affect the wearer just to carry. But the energy generation part itself has very little effect on the wearer, whether it is turned on or not. We hope to improve the device so that it is easier to carry, and to retain the energy-harvesting capabilities."

A lighter version would be helpful to hikers or soldiers who don't have easy access to electricity. And the scientists say similar mechanisms could be built into prosthetic knees other implantable devices such as pacemakers or neurotransmitters that today require a battery, and periodic surgery to replace that battery.

"A future energy harvester might be implanted along with such a device and generate its own power from walking," Kuo said.


'/>"/>

Contact: Nicole Casal Moore
ncmoore@umich.edu
734-647-1838
University of Michigan
Source:Eurekalert

Related biology technology :

1. Amgen and Genentech Brace Themselves for Heavy Pressure From Biogenerics Manufacturers
2. Reovirus Infection of Melanoma Cells Generates Anti-Tumour Immunity
3. Imaging Diagnostic Systems Generates Cash From Building Sale
4. Nanowire generates power by harvesting energy from the environment
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:2/16/2017)... ... ... EIT Digital has launched work to develop a new Smart IOT ... to get under way for the framework, which is designed to reduce the use ... to be transferred eventually to other industries that also require efficient IoT and management ...
(Date:2/16/2017)... , Feb. 16, 2017  MDNA Life ... the development of liquid biopsy tests based on ... into an exclusive license agreement with its first ... proprietary liquid biopsy test for prostate cancer, the ... Korea . This is the first overseas ...
(Date:2/16/2017)... Feb. 16, 2017   Biostage, Inc. (Nasdaq: ... biotechnology company developing bioengineered organ implants to treat cancers ... trachea, announced today the closing on February 15, 2017 ... of common stock and warrants to purchase 20,000,000 shares ... million. The offering was priced at $0.40 per share ...
(Date:2/16/2017)... N.J. , Feb. 16, 2017  Champions Oncology, ... in the development and sale of advanced technology solutions ... oncology drugs, today announced the addition of new cohorts ... These new models will expand Champions, product line ... head and neck cancer, AML, and non-small cell lung ...
Breaking Biology Technology:
(Date:2/8/2017)... 2017 The biometrics market has reached ... of organizations, desires to better authenticate or identify ... and challenge questions), biometrics is quickly working its ... market is driven by use cases, though there ... enterprise uses cases, with consumer-facing use cases encompassing ...
(Date:2/6/2017)... , Feb. 6, 2017 According to ... are driving border authorities to continue to embrace ... there are 2143 Automated Border Control (ABC) eGates ... deployed at more than 163 ports of entry ... to 2016 achieving a combined CAGR of 37%. ...
(Date:2/2/2017)... 1, 2017  Central to its deep commitment ... worldwide, The Japan Prize Foundation today announced the ... pushed the envelope in their respective fields of ... scientists are being recognized with the 2017 Japan ... only contribute to the advancement of science and ...
Breaking Biology News(10 mins):