Navigation Links
Keeping electronics cool

RIVERSIDE, Calif. ( -- A University of California, Riverside engineering professor and a team of researchers have made a breakthrough discovery with graphene, a material that could play a major role in keeping laptops and other electronic devices from overheating.

Alexander Balandin, a professor of electrical engineering at the UC Riverside Bourns College of Engineering, and researchers from The University of Texas at Austin, The University of Texas at Dallas and Xiamen University in China, have shown that the thermal properties of isotopically engineered graphene are far superior to those of graphene in its natural state.

The research efforts were led by the Professor Rodney S. Ruoff of UT Austin and Balandin, a corresponding author for the paper, "Thermal conductivity of isotopically modified graphene." It was published online Jan. 8 by the journal Nature Materials and will later appear in the print publication.

The results bring graphene a single-atom thick carbon crystal with unique properties, including superior electrical and heat conductivity, mechanical strength and unique optical absorption one step closer to being used as a thermal conductor for managing heat dissipation in everything from electronics to photovoltaic solar cells to radars.

"The important finding is the possibility of a strong enhancement of thermal conduction properties of isotopically pure graphene without substantial alteration of electrical, optical and other physical properties," Balandin said. "Isotopically pure graphene can become an excellent choice for many practical applications provided that the cost of the material is kept under control."

He added: "The experimental data on heat conduction in isotopically engineered graphene is also crucially important for developing an accurate theory of thermal conductivity in graphene and other two-dimensional crystals."

The research used the optothermal Raman method, a thermal conductivity measuring technique developed by Balandin. In 2008, Balandin and his group members demonstrated experimentally that graphene is an excellent heat conductor. They also developed the first detailed theory of heat conduction in graphene and related two-dimensional crystals.

The work presented in the Nature Materials paper shows that the thermal conductivity of isotopically engineered graphene is strongly enhanced compared to graphene in its natural state.

Naturally occurring carbon materials, including graphene, are made up of two stable isotopes: about 99 percent of 12C (referred to as "carbon 12") and 1 percent of 13C (referred to as "carbon 13"). The difference between isotopes is in the atomic mass of the carbon atoms. The removal of just about 1 percent of carbon 13, also called isotopic purification, modifies the dynamic properties of crystal lattices and affects their thermal conductivity.

The importance of the present research is explained by practical needs for materials with high thermal conductivity. Heat removal has become a crucial issue for continuing progress in the electronics industry, owing to increased levels of dissipated power as the devices become smaller and smaller. The search for materials that conduct heat well has become essential for the design of the next generation of integrated circuits and three-dimensional electronics. Balandin, who is also founding chair of the materials science and engineering (MS&E) program at UC Riverside, believes graphene will gradually be incorporated into different devices.

Intially, it will likely be used in some niche applications such as thermal interface materials for chip packaging or transparent electrodes in photovoltaic solar cells or flexible displays, he said.

In a few years, it could be used with silicon in computer chips, for example as interconnect wiring or heat spreaders. It also has the potential to benefit other electronic applications, including analog high-frequency transistors, which are used in wireless communications, radar, security systems and imaging.

Balandin and the following researchers contributed to the findings in the Nature Materials paper:

The team at UT Austin, which performed the isotopic purification of graphene, included Ruoff, Shanshan Chen, a post-doctoral fellow, Weiwei Cai a former post-doctoral researcher who is now a professor at the Xiamen University and Columbia Mishra, a graduate student.

The team at UT Dallas, who performed molecular dynamics simulations that compared well with the stronger thermal connectivity of the isotopically engineered graphene, included Kyeongjae Cho, a professor, and Hengji Zhang, graduate student.


Contact: Sean Nealon
University of California - Riverside

Related biology technology :

1. Study on keeping nuclear bombs from US ports shows misplaced fear over cargo scanning cost
2. Study on keeping nuclear bombs from US ports shows misplaced fear over cargo scanning cost
3. Smaller and more powerful electronics requires the understanding of quantum jamming physics
4. Nanowiggles: Scientists discover graphene nanomaterials with tunable functionality in electronics
5. New path to flex and stretch electronics
6. UCSB professor receives award for graphene electronics research
7. Researching graphene nanoelectronics for a post-silicon world
8. NTU and A*STAR Institute of Microelectronics develop cheaper yet efficient thin film solar cells
9. Bold approach could change electronics industry
10. NIST uncovers reliability issues for carbon nanotubes in future electronics
11. Smart skin: Electronics that stick and stretch like a temporary tattoo
Post Your Comments:
(Date:6/27/2016)... (PRWEB) , ... June 27, 2016 , ... Parallel ... clinical trials, announced today the Clinical Reach Virtual Patient Encounter CONSULT module ... circle with the physician and clinical trial team. , Using the CONSULT module, patients ...
(Date:6/27/2016)...   Ginkgo Bioworks , a leading organism ... today awarded as one of the World Economic ... most innovative companies. Ginkgo Bioworks is engineering biology ... world in the nutrition, health and consumer goods ... customers including Fortune 500 companies to design microbes ...
(Date:6/24/2016)... Raleigh, NC (PRWEB) , ... June 24, 2016 , ... ... find the most commonly-identified miRNAs in people with peritoneal or pleural mesothelioma. Their findings ... here to read it now. , Diagnostic biomarkers are signposts in the blood, ...
(Date:6/23/2016)... TORONTO , June 23, 2016 /PRNewswire/ - ... Ontario biotechnology company, Propellon ... the development and commercialization of a portfolio of ... cancers. Epigenetic targets such as WDR5 represent an ... contribute significantly in precision medicine for cancer patients. ...
Breaking Biology Technology:
(Date:5/3/2016)... , May 3, 2016  Neurotechnology, a provider ... MegaMatcher Automated Biometric Identification System (ABIS) , ... multi-biometric projects. MegaMatcher ABIS can process multiple complex ... any combination of fingerprint, face or iris biometrics. ... SDK and MegaMatcher Accelerator , which ...
(Date:4/26/2016)... DUBLIN , April 27, 2016 ... of the  "Global Multi-modal Biometrics Market 2016-2020"  report ... ) , The analysts forecast ... a CAGR of 15.49% during the period 2016-2020.  ... a number of sectors such as the healthcare, ...
(Date:4/14/2016)... TEL AVIV, Israel , April 14, 2016 /PRNewswire/ ... in Behavioral Authentication and Malware Detection, today announced the ... has already assumed the new role. Goldwerger,s ... for BioCatch, on the heels of the deployment of ... In addition, BioCatch,s behavioral biometric technology, which discerns unique ...
Breaking Biology News(10 mins):