Navigation Links
Job-related stress: NIST demonstrates fatigue effects in silicon

Researchers at the National Institute of Standards and Technology (NIST) have demonstrated a mechanical fatigue process that eventually leads to cracks and breakdown in bulk silicon crystalsa phenomenon thats particularly interesting because it long has been thought not to exist. Their recently published* results have important implications for the design of new silicon-based micro-electromechanical system (MEMS) devices that have been proposed for a wide variety of uses.

Siliconthe backbone of the semiconductor industryis one the worlds most heavily studied materials, and it has long been believed to be immune to fatigue from cyclic stresses because of the nature of its crystal structure and chemical bonds. And indeed, conventional tests have validated this. Recent research into silicon MEMS devices, however, has revealed that these microscopic systems that incorporate tiny gears, vibrating reeds and other mechanical features do seem to develop stress-induced cracks that can lead to failure. Why this happens at the microscopic scale is a matter of debate. One school of thought holds that the effect is purely mechanical, due to friction, and the other argues that it essentially is caused by corrosiona chemical effect. Because the effect has only been noticed at submicrometer scales, it has been difficult to determine which theory is correct.

A materials resistance to crackingreferred to as toughness by materials scientistsis measured customarily by taking a sample of the material, slightly notching one edge, and pulling on the ends repetitively to see if the tensile stress causes the notch to grow into a crack. Bulk silicon always has passed this test. But, argued the NIST team, in real-world MEMS devices the stresses are likely to be much more complicated.

To test this, they used an alternate method: pressing the top of test crystals with tiny tungsten-carbide spheres about 3 mm in diameter at pressures below the silicons breaking point. Simply pressing down hard on the crystal for days at a time caused no detectable cracksarguing against the corrosion theory. On the other hand, using half the pressure but cycling the test hundreds of thousands of times revealed a gradually increasing pattern of surface damage at the indentation siteclear indication of mechanical fatigue. The NIST team, which included a researcher from the University of Extremadura in Spain, theorizes that the critical element in their experiments is the addition of shear stress (causing the crystal planes to slide against each other), a component missing in conventional tensile strength tests but not uncommon in real-world applications.

The NIST experiments demonstrated fatigue effects in silicon at the comparatively large scale of hundred of micrometers. The next step is to determine if the same mechanisms operate at the submicrometer level.


Contact: Michael Baum
National Institute of Standards and Technology (NIST)  

Related biology technology :

1. Elekta Demonstrates Commitment to Stereotactic Innovation at EANS
2. ChemoCentryx Demonstrates Recently Discovered Chemokine Receptor CXCR7 is Essential in Tumor Growth
3. Recent Study Confirms Alimentary Healths Bifantis(R) Demonstrates Efficacy in the Treatment of Irritable Bowel Syndrome
4. Organons Asenapine Further Demonstrates Efficacy in Reducing Mania Symptoms for the Treatment of Bipolar I Disorder
5. ARRIVE Registry Analysis Demonstrates Continued Safety and Efficacy of TAXUS(R) Stent in Complex Real-World Patients
6. Magnifi Group Demonstrates Industrys First Interactive Educational Program (IEP) for Spine Fellows
7. Brostallicin Trial Data Demonstrates Encouraging Anti-tumor Activity in Patients With Chemotherapy-Resistant Cancers
8. Circulation Publishes MERLIN TIMI-36 Data Showing Safety and Anti-Arrhythmic Effects of Ranexa(R)
9. Panel to Discuss the Far-Ranging Effects and Consequences of Heart Disease, Which is the Leading Killer in Both Men and Women in the United States
10. Nanotube forests grown on silicon chips for future computers, electronics
11. Worlds most complex silicon phased-array chip developed at UC-San Diego
Post Your Comments:
Related Image:
Job-related stress: NIST demonstrates fatigue effects in silicon
(Date:11/28/2015)... Seoul, South Korea (PRWEB) , ... November 28, 2015 , ... ... new class of eco-friendly avian, porcine and rodent control solutions , ... such as peppermint and cinnamon oil, works across all sensory modalities including visual, smell, ...
(Date:11/26/2015)... 26, 2015 ... Accutest Research Laboratories, a leading independent ... (CRO), has formed a strategic partnership ... Temple Health for joint work on ... ) , --> ...
(Date:11/25/2015)... , November 25, 2015 2 nouvelles ... fois les différences entre les souches bactériennes retrouvées ... des êtres humains . Ces recherches  ouvrent ... envisager la prise en charge efficace de l,un ... chez les chats .    --> 2 ...
(Date:11/25/2015)... Nov. 25, 2015 /PRNewswire/ - Aeterna Zentaris Inc. (NASDAQ: ... business and prospects remain fundamentally strong and highlights ... doxorubicin) recently received DSMB recommendation to continue the ... review of the final interim efficacy and safety ... Endpoint in men with heavily pretreated castration- and ...
Breaking Biology Technology:
(Date:11/30/2015)... DEERFIELD BEACH, Fla. , Nov. 30, 2015 ... selected as a finalist in this year,s Fierce Innovation ... publisher of FierceHealthIT , ... BIOCLAIM was recognized as a finalist in the ... --> ...
(Date:11/26/2015)... DUBLIN , Nov. 26, 2015 Research ... of the "Capacitive Fingerprint Sensors - Technology and ... --> --> ... market, especially in smartphones. The fingerprint sensor vendor Idex ... fingerprint sensor units in mobile devices and of the ...
(Date:11/20/2015)... NXTD ) ("NXT-ID" or the ... mobile commerce market and creator of the Wocket® smart ... recently interviewed on The RedChip Money Report ... on Bloomberg Europe , Bloomberg Asia, Bloomberg Australia, ... NXTD ) ("NXT-ID" or the "Company"), a biometric authentication ...
Breaking Biology News(10 mins):