Navigation Links
International team of scientists discover clue to delay of life on Earth
Date:3/26/2008

TEMPE, Ariz. Scientists from around the world have reconstructed changes in Earths ancient ocean chemistry during a broad sweep of geological time, from about 2.5 to 0.5 billion years ago. They have discovered that a deficiency of oxygen and the heavy metal molybdenum in the ancient deep ocean may have delayed the evolution of animal life on Earth for nearly 2 billion years.

The findings, which appear in the March 27 issue of Nature, come as no surprise to Ariel Anbar, one of the authors of the study and an associate professor at Arizona State University with joint appointments in the Department of Chemistry and Biochemistry and the School of Earth and Space Exploration in the College of Liberal Arts and Sciences. The study was led by Clint Scott, a graduate student at University of California Riverside. Scott works with Timothy Lyons, a professor of biogeochemistry at UCR who is a long-time collaborator of Anbars and also an author of the paper.

Clints data are an important new piece in a puzzle weve been trying to solve for many years, says Anbar. Tim and I have suspected for a while that if the oceans at that time were oxygen deficient they should also have been deficient in molybdenum. Weve found evidence of that deficiency before, at a couple of particular points in time. The new data are important because they confirm that those points were typical for their era.

Molybdenum is of interest to Anbar and others because it is used by some bacteria to convert the element nitrogen from a gas in the atmosphere to a form useful for living things a process known as nitrogen fixation. Bacteria cannot fix nitrogen efficiently when they are deprived of molybdenum. And if bacteria cant fix nitrogen fast enough then eukaryotes a kind of organism that includes plants, pachyderms and people are in trouble because eukaryotes cannot fix nitrogen themselves at all.

If molybdenum was scarce, bacteria would have had the upper hand, continues Anbar. Eukaryotes depend on bacteria having an easy enough time fixing nitrogen that theres enough to go around. So if bacteria were struggling to get enough molybdenum, there probably wouldnt have been enough fixed nitrogen for eukaryotes to flourish.

These molybdenum depletions may have retarded the development of complex life such as animals for almost two billion years of Earth history, says Lyons. The amount of molybdenum in the ocean probably played a major role in the development of early life.

This research was motivated by a review article published in Science in 2002 by Anbar and Andy Knoll, a colleague at Harvard University. Knoll was perplexed by the fact that eukaryotes didnt dominate the world until around 0.7 billion years ago, even though they seemed to have evolved before 2.7 billion years ago. Together, Anbar and Knoll postulated that molybdenum deficiency was the key, arguing that the metal should have been scarce in ancient oceans because there was so little oxygen in the atmosphere in those times.

In todays high-oxygen world, molybdenum is the most abundant transition metal in the oceans. That is because the primary source of molybdenum to the ocean is the reaction of oxygen with molybdenum-bearing minerals in rocks. So the hypotheses rode on the idea that the amount of molybdenum in the oceans should track the amount of oxygen. To test that idea, Scott, Lyons and Anbar examined rock samples from ancient seafloors by dissolving them in a cocktail of acids and analyzing the rock for molybdenum content using a mass spectrometer. Many of these analyses were carried out using state-of-the art instrumentation in the W. M. Keck Foundation Laboratory for Environmental Biogeochemistry at Arizona State University. The scientists found significant evidence for a molybdenum-depleted ocean relative to the high levels measured in modern, oxygen-rich seawater.

By studying Earths ancient oceans, atmosphere and biology we can test how well we understand the modern environment, according to Anbar. Our molybdenum hypothesis was inspired by the theory that biology in the oceans today is often starved for a different metal iron and that the lack of iron in parts of the oceans affects the transfer of the greenhouse gas carbon dioxide from the atmosphere to the ocean he says. The idea that metal deficiency in the oceans can affect the entire planet is very powerful. Here, we are exploring the limits of that idea by seeing if it can solve ancient puzzles. These new findings strengthen our confidence that it can.


'/>"/>

Contact: Nikki Staab
nstaab@asu.edu
480-727-9329
Arizona State University
Source:Eurekalert

Related biology technology :

1. Intellect Neurosciences, Inc. to Present Data on Alzheimers Vaccine at 13th International Congress of Immunology Conference
2. The Government of Quebec and the New Canadian Government Invest in the Creation of an International Biobank
3. International Isotopes Inc. Announces Completion of an Exclusive Distributor Agreement for Sales of New Style Transportation Containers
4. Arrow International Files and Mails Definitive Proxy Materials
5. Niceware International Announces Licensed Vendor Status with ICCBBA, Inc. to Provide ISBT 128-compliant Software
6. DuPont, Genencor International and Tate & Lyle Honored for Groundbreaking Work in Developing Bio-PDO(TM)
7. Viragen International to Reverse Split Its Common Stock
8. Tutogen Medical, Inc. and Zimmer Holdings, Inc. Announce Agreement for International Distribution of Biological Products
9. Zimmer and Tutogen Announce Agreement for International Distribution of Biological Products
10. PAREXEL International to Present at Thomas Weisel Partners Healthcare Conference
11. Biosafety and Biosecurity International Conference 2007 to be held in Abu Dhabi from November 12 to 14
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:10/11/2017)... ... October 11, 2017 , ... ... granted orphan drug designation to SBT-100, its novel anti-STAT3 (Signal Transducer and Activator ... osteosarcoma. SBT-100 is able to cross the cell membrane and bind intracellular STAT3 ...
(Date:10/10/2017)... ... October 10, 2017 , ... For the second ... a US2020 STEM Mentoring Award. Representatives of the FirstHand program travelled to Washington, ... from US2020. , US2020’s mission is to change the trajectory of STEM education ...
(Date:10/10/2017)... 2017 SomaGenics announced the receipt of a ... RealSeq®-SC (Single Cell), expected to be the first commercially ... microRNAs) from single cells using NGS methods. The NIH,s ... accelerate development of approaches to analyze the heterogeneity of ... techniques for measuring levels of mRNAs in individual cells ...
(Date:10/9/2017)... DIEGO , Oct. 9, 2017  BioTech ... biological mechanism by which its ProCell stem cell ... critical limb ischemia.  The Company, demonstrated that treatment ... amount of limbs saved as compared to standard ... the molecule HGF resulted in reduction of therapeutic ...
Breaking Biology Technology:
(Date:6/23/2017)... ITHACA, N.Y. , June 23, 2017 /PRNewswire/ ... leader in dairy research, today announced a new collaboration ... reduce the chances that the global milk supply is ... dairy project, Cornell University has become the newest academic ... Supply Chain, a food safety initiative that includes IBM ...
(Date:5/6/2017)... 5, 2017 RAM Group , ... new breakthrough in biometric authentication based on a ... properties to perform biometric authentication. These new sensors are ... created by Ram Group and its partners. This sensor ... supply chains and security. Ram Group is a ...
(Date:4/13/2017)... UBM,s Advanced Design and Manufacturing event in ... and evolving technology through its 3D Printing and Smart ... the expo portion of the event and feature a ... on trending topics within 3D printing and smart manufacturing. ... will take place June 13-15, 2017 at the Jacob K. ...
Breaking Biology News(10 mins):