Navigation Links
Innovative device for quantum simulations
Date:6/7/2011

A team of researchers from Columbia Engineering, the Italian National Research Council, Princeton University, University of Missouri, and University of Nijmegen (Netherlands) has developed an artificial semiconductor structure that has superimposed a pattern created by advanced fabrication methods that are precise at the nanometer scale. The pattern is similar to the honeycomb lattice that occurs in graphene. The device, called "artificial graphene" (AG), simulates quantum behavior of strongly interacting electrons. The research team sees the AG-device as a first step towards the realization of an innovative class of solid-state quantum simulators to explore fundamental quantum physics.

The research is reported in the June 3rd, 2011, issue of Science (http://www.sciencemag.org.ezproxy.cul.columbia.edu/content/332/6034/1176.full.pdf). The work is co-authored by Vittorio Pellegrini and Marco Polini of the NEST Laboratory of Istituto Nanoscienze-Cnr and Scuola Normale Superiore of Pisa; and by Aron Pinczuk, Applied Physics Professor at The Fu Foundation School of Engineering and Applied Science and Physics Professor at the School of Arts and Sciences, Columbia University; along with researchers from the Universities of Nijmegen, Missouri, and Princeton.

In order to study quantum phenomena that are difficult to be directly observed, scientists use artificial ad-hoc designed systems quantum simulators that can be controlled and manipulated in the laboratory. Researchers have only just begun to develop quantum simulators using different technologies. The AG-device is the first quantum simulator to be based on a semiconductor material that is designed with the goal of uncovering quantum behavior of electrons.

Phenomena such as high-temperature superconductivity, ferromagnetism, and exotic states of matter such as quantum Hall liquids and spin liquids originate from mutual interactions among many electrons. Exact calculations of the behavior of these complex systems are an impossible task even for the more sophisticated and powerful computers. Quantum simulators help bypass the problem by replacing the "uncomputable" quantum system with a controllable artificial one that is able to emulate the dynamics of the original system.

"Quantum simulators based on novel artificial semiconductor structures are at the crossroads of quantum science and innovative technologies," says Aron Pinczuk, Applied Physics Professor at The Fu Foundation School of Engineering and Applied Science and Physics Professor at the School of Arts and Sciences, Columbia University. "While the frontiers of quantum physics are being explored with giant accelerators, in this branch of condensed matter science we employ advanced methods that expand the state-of-the-art in growth and processing of semiconductors. We could describe our work on quantum simulators as 'probing quantum weirdness in a nano-nut-shell.'"

The simulator developed by the researchers consists of a honeycomb lattice realized on the surface of a Gallium Arsenide (GaAs) heterostructure using advanced nanofabrication methods. The artificial honeycomb lattice structure replicates that of graphene, a material in which electrons behave in a peculiar way because of the crystal-lattice geometry. With the ability to modify key parameters such as the lattice constant of the artificial lattice, the researchers are in the position to explore different regimes of electron-electron interactions in graphene-like systems.

Vittorio Pellegrini and Marco Polini from NEST Laboratory of Istituto Nanoscienze-Cnr and Scuola Normale Superiore note that the AG-device has been tested with a "first run" trial that generated an unexpected peculiar quantum state. "The early data we collected are quite promising and show the great potential our device has," they say. "The next step in this research is a fine-tuning of the AG-device". The researchers are excited about the potential of creating venues for the uncovering of novel quantum states that could, eventually, lead to new device concepts and eventually to an array of applications, for instance, in advanced information processing or in cryptography.

Pinczuk added that they hope next to achieve new breakthroughs through the creation of smaller nanofabricated structures reaching limits in which individual units in patterns have lengths of five nanometers. "This is a state-of-the-art that should open access to physics and materials science that has not yet been explored!"


'/>"/>

Contact: Holly Evarts
holly@engineering.columbia.edu
212-854-3206
Columbia University
Source:Eurekalert

Related biology technology :

1. DuPont Chair & CEO: Delivering Innovative Solutions and Long-term Growth
2. BioCrossroads Invests in Innovative Biotech Targeting Challenging Diseases
3. HRC Medical Center Offers Patients Relief with Innovative Bio-Identical Hormone Replacement Therapy
4. The Future of Molecular Diagnostics: Innovative Technologies Driving Market Opportunities in Personalized Medicine
5. DGP Group Rebrands as Intelsius and Announces Launch of New, Innovative Packaging System - Orcathermâ„¢
6. Reportlinker Adds Manufacturing of Biologics - Increasing Demand for Monoclonal Antibodies and Recombinant Proteins Drives Increases in Capacities and Innovative Production Technologies
7. Launch of IMIDIA - An Innovative Medicines Initiative Project for Diabetes
8. SPO Medical Announces Innovative Wellness Bracelet
9. SRI International Receives $100,000 Grand Challenges Explorations Grant for Innovative Global Health Research
10. PolyTouch Medical Ltd. Announces the Submission of a Premarket Application for PatchAssist - an Innovative Mesh Deployment and Placement Device for Laparoscopic Hernia Repair
11. EStar Award Recognizes Innovative Supercomputer Cooling
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/27/2017)... , March 27, 2017 Infectex Ltd., a Russian portfolio ... 2b-3 clinical study of SQ109 added to the standard drug therapy regimen in patients ... scientists at Sequella, Inc. ( USA ) and the US National Institutes ... ... Maxwell Biotech Venture Fund Logo ...
(Date:3/27/2017)... Winston-Salem, NC (PRWEB) , ... March 27, 2017 , ... ... Clinical Trial Collaborations (CTC) conference presented by The Conference Forum in Boston ... the way they collaborate to drive improved clinical trial outcomes and bring them closer ...
(Date:3/27/2017)... 27, 2017 Neurotrope, Inc. (OTCQB: NTRP),  ... neurodegenerative diseases, including Alzheimer,s disease, today announced that ... list the Company,s common stock on the NASDAQ ... Stock Market, a unit of the NASDAQ OMX ... the Opening Bell at the NASDAQ MarketSite in ...
(Date:3/24/2017)... Sinovac Biotech Ltd. ("Sinovac" or the "Company") (NASDAQ: SVA), a leading ... announced that its board of directors has amended its shareholder rights ... 27, 2017 to March 27, 2018. The amendment was not in response ... ... Biotech Ltd. is a China -based biopharmaceutical company ...
Breaking Biology Technology:
(Date:3/24/2017)... , March 24, 2017 The Controller General ... Controller Mr. Abdulla Algeen have received the prestigious international IAIR ... Continue Reading ... ... picture) and Deputy Controller Abdulla Algeen (small picture on the right) have ...
(Date:3/23/2017)... India , March 23, 2017 The report "Gesture ... Touchless Biometric), Industry, and Geography - Global Forecast to 2022", published by MarketsandMarkets, ... at a CAGR of 29.63% between 2017 and 2022. ... ... ...
(Date:3/22/2017)... , March 21, 2017   Neurotechnology , ... recognition technologies, today announced the release of the ... which provides improved facial recognition using up to ... a single computer. The new version uses deep ... accuracy, and it utilizes a Graphing Processing Unit ...
Breaking Biology News(10 mins):