Navigation Links
In solar cells, tweaking the tiniest of parts yields big jump in efficiency
Date:1/20/2012

BUFFALO, N.Y. -- By tweaking the smallest of parts, a trio of University at Buffalo engineers is hoping to dramatically increase the amount of sunlight that solar cells convert into electricity.

With military colleagues, the UB researchers have shown that embedding charged quantum dots into photovoltaic cells can improve electrical output by enabling the cells to harvest infrared light, and by increasing the lifetime of photoelectrons.

The research appeared online last May in the journal Nano Letters. The research team included Vladimir Mitin, Andrei Sergeev and Nizami Vagidov, faculty members in UB's electrical engineering department; Kitt Reinhardt of the Air Force Office of Scientific Research; and John Little and advanced nanofabrication expert Kimberly Sablon of the U.S. Army Research Laboratory.

Mitin, Sergeev and Vagidov have founded a company, OPtoElectronic Nanodevices LLC. (OPEN LLC.), to bring the innovation to the market.

The idea of embedding quantum dots into solar panels is not new: According to Mitin, scientists had proposed about a decade ago that this technique could improve efficiency by allowing panels to harvest invisible, infrared light in addition to visible light. However, intensive efforts in this direction have previously met with limited success.

The UB researchers and their colleagues have not only successfully used embedded quantum dots to harvest infrared light; they have taken the technology a step further, employing selective doping so that quantum dots within the solar cell have a significant built-in charge.

This built-in charge is beneficial because it repels electrons, forcing them to travel around the quantum dots. Otherwise, the quantum dots create a channel of recombination for electrons, in essence "capturing" moving electrons and preventing them from contributing to electric current.

The technology has the potential to increase the efficiency of solar cells up to 45 percent, said Mitin, a SUNY Distinguished Professor. Through UB's Office of Science, Technology Transfer and Economic Outreach (STOR), he and his colleagues have filed provisional patent applications to protect their technology.

"Clean technology will really benefit the region, the state, the country," Mitin said. "With high-efficiency solar cells, consumers can save money and providers can have a smaller solar field that produces more energy."

Mitin and his colleagues have already invested significant amounts of time in developing the quantum dots with a built-in-charge, dubbed "Q-BICs." To further enhance the technology and bring it to the market, OPEN LLC is now seeking funding from private investors and federal programs.


'/>"/>

Contact: Charlotte Hsu
chsu22@buffalo.edu
716-645-4655
University at Buffalo
Source:Eurekalert

Related biology technology :

1. Notre Dame researchers develop paint-on solar cells
2. Discovery of a dark state could mean a brighter future for solar energy
3. A light wave of innovation to advance solar energy
4. Solar power could get boost from new light absorption design
5. NTU and A*STAR Institute of Microelectronics develop cheaper yet efficient thin film solar cells
6. Researchers use carbon nanotubes to make solar cells affordable, flexible
7. Copper film could lower touch screen, led and solar cell costs
8. TU Delft: cheap and efficient solar cell made possible by linked nanoparticles
9. Nature offers key lessons on harvesting solar power, says U of T chemistry professor
10. How to produce flexible CIGS solar cells with record efficiency
11. U of T-led research improves performance of next-generation solar cell technology
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:1/20/2017)... January 20, 2017 http://www.Financialbuzz.com ... one of leading causes of death worldwide. There were ... number of cancer related deaths increased gradually over time, ... incidence rate of various cancers continues to drive demand ... report by Global Market Insights, Inc. cancer biological therapy ...
(Date:1/19/2017)... HOUSTON , Jan. 19, 2017 ... formation of its Medical/Clinical Advisory Board.  This new ... who enhance the range and depth of expertise ... its novel prenatal diagnostic tests.  These experts are ... guidance for the company,s product development and commercialization ...
(Date:1/19/2017)... (PRWEB) , ... January 19, 2017 , ... ... of product vigilance software to leading biopharmaceutical and medical device manufacturers and regulators, ... a fully 21 CFR Part 11-compliant email client designed to provide product vigilance ...
(Date:1/19/2017)... , ... January 18, 2017 , ... ... Institutes of Health (NIH) to update its Data Sharing Policy. Specifically, the nation’s ... of grant applications subject to the existing policy. AMIA recommended that NIH earmark ...
Breaking Biology Technology:
(Date:12/15/2016)... , Dec 15, 2016 ... Research and Markets has announced the ... their offering. The report forecasts the global military biometrics ... The report has been prepared based on an in-depth ... landscape and its growth prospects over the coming years. The report also ...
(Date:12/12/2016)... 12, 2016  Researchers at Trinity College, Dublin, ... by combining the material with Silly Putty. The mixture ... detector able to sense pulse, blood pressure, respiration, ... The research team,s findings were ... here:  http://science.sciencemag.org/content/354/6317/1257 ...
(Date:12/7/2016)... , December 7, 2016 BioCatch , the ... of its patent portfolio, which grew to over 40 granted and pending ... , , ... filed patent entitled " System, Device, and Method Estimating Force ... enables device makers to forego costly hardware components needed to estimate the ...
Breaking Biology News(10 mins):