Navigation Links
In new mass-production technique, robotic insects spring to life
Date:2/15/2012

Cambridge, Mass. - February 15, 2012 - A new technique inspired by elegant pop-up books and origami will soon allow clones of robotic insects to be mass-produced by the sheet.

Devised by engineers at Harvard, the ingenious layering and folding process enables the rapid fabrication of not just microrobots, but a broad range of electromechanical devices.

In prototypes, 18 layers of carbon fiber, Kapton (a plastic film), titanium, brass, ceramic, and adhesive sheets have been laminated together in a complex, laser-cut design. The structure incorporates flexible hinges that allow the three-dimensional productjust 2.4 millimeters tallto assemble in one movement, like a pop-up book.

The entire product is approximately the size of a U.S. quarter, and dozens of these microrobots could be fabricated in parallel on a single sheet.

"This takes what is a craft, an artisanal process, and transforms it for automated mass production," says Pratheev Sreetharan (A.B. '06, S.M. '10), who co-developed the technique with J. Peter Whitney. Both are doctoral candidates at the Harvard School of Engineering and Applied Sciences (SEAS).

Sreetharan, Whitney, and their colleagues in the Harvard Microrobotics Laboratory at SEAS have been working for years to build bio-inspired, bee-sized robots that can fly and behave autonomously as a colony. Appropriate materials, hardware, control systems, and fabrication techniques did not exist prior to the RoboBees project, so each must be invented, developed, and integrated by a diverse team of researchers.

Less than a year ago, the group was using a painstaking and error-prone method to fold, align, and secure each of the minuscule parts and joints.

"You'd take a very fine tungsten wire and dip it in a little bit of superglue," explains Sreetharan. "Then, with that tiny ball of glue, you'd go in under a microscope like an arthroscopic surgeon and try to stick it in the right place."

"Until recently, the manual assembly process was the state of the art in this field," Sreetharan adds.

The same result can now be achievedwithout human errorthrough locking mechanisms and dip soldering. The new process also enables the use of cured carbon fiber, which is rigid and easy to align, rather than uncured carbon fiber, which Sreetharan compares to "wet tissue paper."

"Our new techniques allow us to use any material including polymers, metals, ceramics, and composites," says principal investigator Rob Wood, an Associate Professor of Electrical Engineering at SEAS and a Core Faculty Member at the Wyss Institute for Biologically Inspired Engineering at Harvard.

"The ability to incorporate any type and number of material layers, along with integrated electronics, means that we can generate full systems in any three-dimensional shape," Wood says. "We've also demonstrated that we can create self-assembling devices by including pre-stressed materials."

The implications of this novel fabrication strategy go far beyond these micro-air vehicles. The same mass-production technique could be used for high-power switching, optical systems, and other tightly integrated electromechanical devices that have parts on the scale of micrometers to centimeters.

Moreover, the layering process builds on the manufacturing process currently used to make printed circuit boards, which means that the tools for creating large sheets of pop-up devices are common and abundant. It also means that the integration of electrical components is a natural extension of the fabrication processparticularly important for the size- and weight-constrained RoboBees project.

"In a larger device, you can take a robot leg, for example, open it up, and just bolt in circuit boards. We're so small that we don't get to do that. I can't put a structural mechanism in here and have it serve no electrical function."

Pointing to the carbon-fiber box truss that constitutes the pop-up bee's body frame, Sreetharan says, "Now, I can put chips all over that. I can build in sensors and control actuators."

Essentially, tiny robots can now be built by slightly bigger robots. Designing how all of the layers will fit together and fold, however, is still a very human task, requiring creativity and expertise. Standard computer-aided design (CAD) tools, typically intended for either flat, layered circuit boards or 3D objects, do not yet support devices that combine both.

Once the design is complete, though, fabrication can be fully automated, with accuracy and precision limited only by the machining tools and materials.

"The alignment is now better than we can currently measure," says Sreetharan. "I've verified it to better than 5 microns everywhere, and we've gone from a 15% yield towell, I don't think I've ever had a failure."

The full fabrication process will be described in the March issue of the Journal of Micromechanics and Microengineering. Co-authors and collaborators, beside Whitney, Sreetharan, and Wood, include Kevin Ma, a graduate student at SEAS; and Marc Strauss, a research assistant in Wood's lab.

The Harvard Office of Technology Development is now developing a strategy to commercialize this technology. As part of this effort, they have filed patent applications on this work and are engaging with entrepreneurs, venture capitalists, and companies to identify disruptive applications in a range of industries.


'/>"/>

Contact: Caroline Perry
cperry@seas.harvard.edu
617-496-1351
Harvard University
Source:Eurekalert  

Related biology technology :

1. Limit to nanotechnology mass-production?
2. Using new technique, scientists uncover a delicate magnetic balance for superconductivity
3. Secret of sandcastle construction could help revive ancient building technique, researchers say
4. Live Robotic Prostate Surgery Performed for Nations Youth
5. UT professors pathogen research inspires robotics design for medicine and military
6. New frozen smoke may improve robotic surgery, energy storage
7. Health Robotics Continues Worldwide Consolidation by Entering the Norwegian Market With Beckman Automation
8. Robotic gripper runs on coffee ... and balloons
9. Dr. Ramin Mirhashemi, MD of Gynecological Oncology Associates Discusses Uterine Fibroid Treatment with da Vinci Robotic Hysterectomy Surgery
10. Health Robotics Releases Results of First 20 i.v.STATIONs Return On Investment (ROI) Studies in the USA and Canada
11. Health Robotics South East Asia Wins two key Cancer Therapy Outsourcing Projects in Malaysia and Thailand
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
In new mass-production technique, robotic insects spring to life
(Date:2/8/2016)... ... ... Information Management Services ( IMS ) is pleased to announce a major upgrade ... and is so significant it was endowed with a new name, BSI Engage. ... a streamlined layout and a more intuitive format for navigating the system. ...
(Date:2/8/2016)... -- Diplomat Pharmacy, Inc. (NYSE: DPLO) announced today that its new website has gone live. On Thursday, ... mobile-friendly. Visit the new site: www.diplomat.is ... ... ... "The goal was to reimagine the website and create ...
(Date:2/5/2016)...  In the pharmaceutical industry the medical affairs function ... activities including the identification and engagement of key thought ... high in the oncology therapeutic area where most treating ... Role of Medical Affairs in Oncology Launch Excellence ." ... find better ways to utilize medical affairs to develop ...
(Date:2/4/2016)... 4, 2016 - New FDA action date of ... New FDA action date of July 22, 2016   ... 22, 2016   - Lifitegrast ... decade indicated for the treatment of signs and symptoms of dry ... the potential to be the only product approved in the U.S. in the past decade ...
Breaking Biology Technology:
(Date:2/3/2016)... PUNE, India , February 3, 2016 ... to the new market research report "Automated Fingerprint Identification ... (Tenprint Search, Latent Search), Application (Banking & Finance, Government, ... 2020", published by MarketsandMarkets, the market is expected to ... estimated CAGR of 21.0% between 2015 and 2020. The ...
(Date:2/3/2016)... 3, 2016 ... the "Emotion Detection and Recognition Market ... Others), Software Tools (Facial Expression, Voice Recognition ... Regions - Global forecast to 2020" ... http://www.researchandmarkets.com/research/d8zjcd/emotion_detection ) has announced the addition ...
(Date:2/2/2016)... This BCC Research report provides a ... the recent advances in high throughput ‘omic platforms ... forward. Includes forecast through 2019. Use ... opportunities that exist in the bioinformatic market. Analyze ... well as IT and bioinformatics service providers. Analyze ...
Breaking Biology News(10 mins):