Navigation Links
Improving microscopy by following the astronomers' guide star
Date:2/17/2011

A corrective strategy used by astronomers to sharpen images of celestial bodies can now help scientists see with more depth and clarity into the living brain of a mouse. Eric Betzig, a group leader at the Howard Hughes Medical Institute's Janelia Farm Research Campus, will present his team's latest work using adaptive optics for biology at the annual meeting of the American Association for the Advancement of Science in Washington, D.C. during a press conference on Thursday, Feb., 17, and a panel discussion on Friday, Feb. 18.

A key problem in microscopy is that when the light shines on a biological sample, such as a slice of brain tissue, light waves hit the cells and bounce off in different directions. The larger the piece of tissue, the more interesting and diverse its collection of parts, which makes the light waves bend and scatter in unpredictable ways.

For the past decade, researchers have been trying, with limited success, to sharpen blurred images of biological specimens using a method astronomers call adaptive optics. Recently, however, Betzig and postdoctoral researcher Na Ji, have made large strides toward improving resolution deep into tissue by combining a new approach to adaptive optics with an imaging technology called two photon fluorescence microscopy. Their results, published in 2009 in the journal Nature Methods, describe the first applications of adaptive optics to improve images of brain slices taken from mice.

Astronomers apply adaptive optics by shining a laser high in the atmosphere in the same direction as the star or other object they want to observe. The light returning from this so-called guide star gets distorted as it travels through the turbulent atmosphere back to the telescope. By using a tool called a wavefront sensor, astronomers can measure this distortion directly, and then use these measurements to deform a telescope mirror to cancel out the atmospheric aberrations. The correction gives a much clearer view of the target. Today, adaptive optics instrumentation accompanies all of the world's major telescopes.

Unlike in astronomy, microscopists can't place a wavefront sensor within a live animal to directly measure the distortions of light deep within tissue. To get around this problem, Betzig reasoned that the perfect focus is nothing more than a bunch of rays converging from many different directions to the same identical point. The heterogeneity of tissue means that ray is deflected differently so they no longer meet at a single point. Betzig figured that if they could study the rays individually, they could correct their deflections and steer them back to a single focus.

For their 2009 study, Betzig and Ji buried fluorescent beads underneath thick slices of mouse brain. The beads act as guide stars to help measure the deflections of the rays. To do that, the pair use a one-inch display called a spatial light modulator. The display allows them to turn on one ray at a time and then take an image of the bead. They can then determine how much the ray is deflected from the amount the bead's image is shifted relative to the desired focal point. The display is then used like a small, tiltable mirror to steer the ray back to the focal point. The process is then repeated with each of the other rays. This strategy improves the fluorescent signal and recovers optimal resolution through a chunk of tissue up to 400 micrometers thick. "Another advantage is that it's very efficient in terms of how little light is needed," Betzig says. "Light is not completely noninvasive, so as microscopists we have to be very careful not to damage our specimens."

Ji, who will soon begin her own lab as a fellow at Janelia Farm, has recently taken the technique to the next level: live brain imaging in mice. To do this, she uses genetic engineering to label the brains of mouse fetuses with a fluorescent marker of neurons while at the same time injecting fluorescent bead guide stars. After the mice mature, Ji builds a window into the brain by removing a piece of skull and replacing it with a clear glass cover. She then uses the adaptive optical microscope she and Betzig built to peer through the glass and image the individual neurons underneath.

One of the concerns the researchers faced when imaging a live animal was how long a correction would persist. In astronomy, stars twinkle so fast that up to a thousand corrections are needed per second. Fortunately, Ji and Betzig learned that, for an anesthetized mouse, a single correction would remain valid for nearly an hour. Another question was whether the correction made at a single guide star bead could be applied to surrounding areas. Although the answer varies from sample to sample, Ji's work has shown that a single correction will often apply to a space of over 100 micrometers in each direction, a volume that can fit dozens of neurons. "It would be prohibitively slow if you had to correct at every point throughout an entire volume," Betzig says. To address this same problem in the field of astronomy, scientists employ a series of deformable mirrors that each look at guide stars in different directions. Betzig hopes to use a similar strategy to widen the correction even further in his microscope.

Since arriving at Janelia Farm in 2005, Betzig and his colleagues have pioneered new super high-resolution imaging techniques and shared them with biologists. One of them, photoactivated localization microscopy or PALM, maps individual protein molecules to produce images with 10-20 times the resolution of a traditional light microscope. PALM and other types of imaging, such as confocal microscopy and wide-field imaging, can be greatly improved with adaptive optics, he says. This is only the beginning. "What we do is primitive compared to the sophistication of what they do in the astronomy community," Betzig says. "I still feel we have a lot to learn from astronomers."


'/>"/>

Contact: Andrea Widener
widenera@hhmi.org
301-215-8807
Howard Hughes Medical Institute
Source:Eurekalert

Related biology technology :

1. Iowa State, Ames Lab physicist developing, improving designer optical materials
2. 52-Week Phase 3 Study Found Investigational Drug Dapagliflozin Plus Metformin Similar to Glipizide Plus Metformin in Improving Glycosylated Hemoglobin (HbA1c) in Adults with Type 2 Diabetes Mellitus
3. Caliper Owners Group Meeting Showcases Critical Role of Biopharma and Academic Researchers for Improving Healthcare and Quality of Life
4. Plant BioTech World Congress to Highlight Scientific Discoveries and Technologies Bringing New Hope to Feeding the World and Improving Lives
5. Elsevier Addresses Todays Healthcare Information Crisis With a Renewed Focus on Improving Quality and Efficiency
6. Soybean genome analysis reveals pathways for improving biodiesel
7. Nanomedicine Company Focuses on Improving Premature Infant Health and Reducing Death Rate
8. Improving Transfusion Safety: Fenwal, Verax Biomedical Sign Agreement for Rapid, Point-of-Care Bacteria Test
9. 2009: Immunotec announces important clinical research initiative: New study to be launched with the goal of improving the quality of the aging process
10. ClearTrial Industry Expert to Lead Session at DIA Annual Meeting on Improving Accrual and Contract Management in Clinical Trials
11. AARC Presentation Cites Masimo Patient SafetyNet as Key Factor in Improving Patient Outcomes and Reducing Costs in Post-Acute Care Facilities
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/23/2016)... ... June 23, 2016 , ... Charm Sciences, Inc. is ... has received AOAC Research Institute approval 061601. , “This is another AOAC-RI approval ... Bob Salter, Vice President of Regulatory and Industrial Affairs. “The Peel Plate methods ...
(Date:6/23/2016)... ... 23, 2016 , ... STACS DNA Inc., the sample tracking software company, today ... Laboratory, has joined STACS DNA as a Field Application Specialist. , “I am ... and COO of STACS DNA. “In further expanding our capacity as a scientific integrator, ...
(Date:6/23/2016)... -- On Wednesday, June 22, 2016, the NASDAQ ... Dow Jones Industrial Average edged 0.27% lower to finish at ... Stock-Callers.com has initiated coverage on the following equities: Infinity Pharmaceuticals ... NKTR ), Aralez Pharmaceuticals Inc. (NASDAQ: ARLZ ... Learn more about these stocks by accessing their free trade ...
(Date:6/23/2016)... , June 23, 2016 ... research report to its pharmaceuticals section with historic ... details and much more. Complete report ... 151 pages, profiling 15 companies and supported with ... http://www.reportsnreports.com/reports/601420-global-cell-culture-media-industry-2016-market-research-report.html . The Global ...
Breaking Biology Technology:
(Date:6/9/2016)... , June 9, 2016 ... Police deploy Teleste,s video security solution to ensure the safety ... France during the major tournament Teleste, ... communications systems and services, announced today that its video security ... to back up public safety across the country. ...
(Date:6/2/2016)... 2016 Perimeter Surveillance & Detection ... Physical Infrastructure, Support & Other Service  The ... offers comprehensive analysis of the global Border Security ... revenues of $17.98 billion in 2016. Now: ... leader in software and hardware technologies for advanced video ...
(Date:5/12/2016)... , May 12, 2016 WearablesResearch.com ... just published the overview results from the Q1 wave ... the recent wave was consumers, receptivity to a program ... data with a health insurance company. "We ... to share," says Michael LaColla , CEO of ...
Breaking Biology News(10 mins):