Navigation Links
Implanted neurons, grown in the lab, take charge of brain circuitry
Date:11/21/2011

MADISON -- Among the many hurdles to be cleared before human embryonic stem cells can achieve their therapeutic potential is determining whether or not transplanted cells can functionally integrate into target organs or tissues.

Writing today (Monday, Nov. 21) in the Proceedings of the National Academy of Sciences, a team of Wisconsin scientists reports that neurons, forged in the lab from blank slate human embryonic stem cells and implanted into the brains of mice, can successfully fuse with the brain's wiring and both send and receive signals.

Neurons are specialized, impulse conducting cells that are the most elementary functional unit of the central nervous system. The 100 billion or so neurons in the human brain are constantly sending and receiving the signals that govern everything from walking and talking to thinking. The work represents a crucial step toward deploying customized cells to repair damaged or diseased brains, the most complex human organ.

"The big question was can these cells integrate in a functional way," says Jason P. Weick, the lead author of the new study and a staff scientist at the University of Wisconsin-Madison's Waisman Center. "We show for the first time that these transplanted cells can both listen and talk to surrounding neurons of the adult brain."

The Wisconsin team tested the ability of their lab grown neurons to integrate into the brain's circuitry by transplanting the cells into the adult mouse hippocampus, a well-studied region of the brain that plays a key role in processing memory and spatial navigation. The capacity of the cells to integrate was observed in live tissue taken from the animals that received the cell transplants.

Weick and colleagues also reported that the human neurons adopted the rhythmic firing behavior of many brain cells talking to one another in unison. And, perhaps more importantly, that the human cells could modify the way the neural network behaved.

A critical tool that allowed the UW group to answer this question was a new technology known as optogenetics, where light, instead of electric current, is used to stimulate the activity of the neurons.

"Previously, we've been limited in how efficiently we could stimulate transplanted cells. Now we have a tool that allows us to specifically stimulate only the transplanted human cells, and lots of them at once in a non-invasive way," says Weick.

Weick explains that the capacity to modulate the implanted cells was a necessary step in determining the function of implanted cells because previous technologies were too imprecise and unreliable to accurately determine what transplanted neurons were doing.

Embryonic stem cells, and the closely related induced pluripotent stem cells can give rise to all of the 220 types of tissues in the human body, and have been directed in the lab to become many types of cells, including brain cells.

The appeal of human embryonic stem cells and induced pluripotent cells is the potential to manufacture limitless supplies of healthy, specialized cells to replace diseased or damaged cells. Brain disorders such as Parkinson's disease and amyotrophic lateral sclerosis, more widely known as Lou Gehrig's disease, are conditions that scientists think may be alleviated by using healthy lab grown cells to replace faulty ones. Multiple studies over the past decade have shown that both embryonic stem cells and induced cells can alleviate deficits of these disorders in animal models.

The new study opens the door to the potential for clinicians to deploy light-based stimulation technology to manipulate transplanted tissue and cells. "The marriage between stem cells and optogenetics has the potential to assist in the treatment of a number of debilitating neurodegenerative disorders," notes Su-Chun Zhang, a UW-Madison professor of neuroscience and an author of the new PNAS report. "You can imagine that if the transplanted cells don't behave as they should, you could use this system to modulate them using light."


'/>"/>

Contact: Jason P. Weick
weick@wisc.edu
608-262-8969
University of Wisconsin-Madison
Source:Eurekalert

Related biology technology :

1. Implanted glucose sensor works for more than 1 year
2. Gem of an idea: A flexible diamond-studded electrode implanted for life
3. Laboratory-grown urethras implanted in patients, scientists report
4. New method for producing precursor of neurons, bone and other important tissues from stem cells
5. Ions control shape of nanofibers grown on clear substrate
6. Carbon molecule with a charge could be tomorrows semiconductor
7. Lilly to Take Charge to Earnings Related to Pending Federal and State Investigations of Past Practices
8. T-System Releases The T SystemEV(R) 2.6.3, Featuring New Meds/Allergies Notification, Automated Charge Capture
9. A supercharged metal-ion generator
10. Boston Scientific Resolves Outstanding Litigation Matter, Finalizes Goodwill Impairment Charge
11. Authentidate Teams with Nortel to Enhance Hospital Patient Discharge and Placement Processes
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:5/26/2016)... READING, England , May 26, 2016 ... a leading global provider of clinical, commercial and ... organisations and TranScrip ( http://www.transcrip-partners.com ), a renowned ... product lifecycle, today announced the extension of their ...      (Logo: http://photos.prnewswire.com/prnh/20141208/720248 ) , ...
(Date:5/26/2016)... ... May 26, 2016 , ... Kinder Scientific ... positive developments that position the Company for the future. Kinder Scientific announces ... F. Kinghorn has been appointed Chairman of the Board, Curtis D. Kinghorn has ...
(Date:5/25/2016)... ... May 25, 2016 , ... The Ankle Plating ... options designed to address fractures of the distal tibia and fibula. This system ... Ankle Plating System 3 is composed of seven plate families that span the ...
(Date:5/25/2016)... LAKE CITY, UTAH. (PRWEB) , ... May 25, 2016 , ... ... efficiencies in healthcare information exchange, today announced that Charles W. Stellar has been named ... as WEDI’s interim CEO since January 2016. As an executive leader with more than ...
Breaking Biology Technology:
(Date:4/19/2016)... 20, 2016 The new GEZE ... compact web-based "all-in-one" system solution for all door components. ... or the door interface with integration authorization management system, ... systems. The minimal dimensions of the access control and ... building installations offer considerable freedom of design with regard ...
(Date:4/13/2016)... 13, 2016  IMPOWER physicians supporting Medicaid patients in ... new clinical standard in telehealth thanks to a new ... higi platform, IMPOWER patients can routinely track key health ... mass index, and, when they opt in, share them ... to a local retail location at no cost. By ...
(Date:3/23/2016)... WAKEFIELD, Massachusetts , March 23, 2016 ... kombiniert im Interesse erhöhter Sicherheit Gesichts- und ... Xura, Inc. (NASDAQ: MESG ... heute bekannt, dass das Unternehmen mit SpeechPro ... insbesondere aus der Finanzdienstleistungsbranche, wird die Möglichkeit ...
Breaking Biology News(10 mins):