Navigation Links
Imaging tool may aid nanoelectronics by screening tiny tubes
Date:11/16/2010

WEST LAFAYETTE, Ind. - Researchers have demonstrated a new imaging tool for rapidly screening structures called single-wall carbon nanotubes, possibly hastening their use in creating a new class of computers and electronics that are faster and consume less power than today's.

The semiconducting nanostructures might be used to revolutionize electronics by replacing conventional silicon components and circuits. However, one obstacle in their application is that metallic versions form unavoidably during the manufacturing process, contaminating the semiconducting nanotubes.

Now researchers have discovered that an advanced imaging technology could solve this problem, said Ji-Xin Cheng, an associate professor of biomedical engineering and chemistry at Purdue University.

"The imaging system uses a pulsing laser to deposit energy into the nanotubes, pumping the nanotubes from a ground state to an excited state," he said. "Then, another laser called a probe senses the excited nanotubes and reveals the contrast between metallic and semiconductor tubes."

The technique, called transient absorption, measures the "metallicity" of the tubes. The detection method might be combined with another laser to zap the unwanted metallic nanotubes as they roll off of the manufacturing line, leaving only the semiconducting tubes.

Findings are detailed in a research paper appearing online this week in the journal Physical Review Letters.

Single-wall nanotubes are formed by rolling up a one-atom-thick layer of graphite called graphene, which could eventually rival silicon as a basis for computer chips. Researchers in Cheng's group, working with nanomaterials for biomedical studies, were puzzled when they noticed the metallic nanoparticles and semiconducting nanowires transmitted and absorbed light differently after being exposed to the pulsing laser.

Then researcher Chen Yang, a Purdue assistant professor of physical chemistry, suggested the method might be used to screen the nanotubes for nanoelectronics.

"When you make nanocircuits, you only want the semiconducting ones, so it's very important to have a method to identify the metallic nanotubes," Yang said.

The paper was written by Purdue physics doctoral student Yookyung Jung; biomedical engineering research scientist Mikhail N. Slipchenko; Chang-Hua Liu, an electrical engineering graduate student at the University of Michigan; Alexander E. Ribbe, manager of the Nanotechnology Group in Purdue's Department of Chemistry; Zhaohui Zhong, an assistant professor of electrical engineering and computer science at Michigan; and Yang and Cheng. The Michigan researchers produced the nanotubes.

Semiconductors such as silicon conduct electricity under some conditions but not others, making them ideal for controlling electrical current in devices such as transistors and diodes.

The nanotubes have a diameter of about 1 nanometer, or roughly the length of 10 hydrogen atoms strung together, making them far too small to be seen with a conventional light microscope.

"They can be seen with an atomic force microscope, but this only tells you the morphology and surface features, not the metallic state of the nanotube," Cheng said.

The transient absorption imaging technique represents the only rapid method for telling the difference between the two types of nanotubes. The technique is "label free," meaning it does not require that the nanotubes be marked with dyes, making it potentially practical for manufacturing, he said.

The researchers performed the technique with nanotubes placed on a glass surface. Future work will focus on performing the imaging when nanotubes are on a silicon surface to determine how well it would work in industrial applications.

"We have begun this work on a silicon substrate, and preliminary results are very good," Cheng said.

Future research also may study how electrons travel inside individual nanotubes.


'/>"/>

Contact: Emil Venere
venere@purdue.edu
765-494-4709
Purdue University
Source:Eurekalert  

Related biology technology :

1. ICON Medical Imaging Launches New Service to Boost Reliability of Cardiology Studies
2. VisEn Announces Commercial Launch of IntegriSenseTM Fluorescence Molecular Imaging Agent
3. LI-COR August 27th On-Line Webinar Introduces New Approach to Small Animal In Vivo Imaging
4. Caliper Launches Small Animal Molecular Imaging System Enabling Real-Time Video Observation
5. Small Animal Imaging Market: Biospace Lab Wins Frost & Sullivan Accolade for Its Successful Product Line Strategy
6. Imaging Diagnostic Systems Receives its First Order for its CT Laser Mammography System for Israel
7. Ziehm Imaging Extends its Training Offer
8. Imaging Diagnostic Systems Sells Its CT Laser Mammography System to Budapest, Hungary
9. Case Western Reserve University researcher improves LCDs with 3-D nanoimaging process
10. LI-COR Biosciences and Euthanex Corporation Provide Anesthesia System for Small Animal Imaging
11. Diagnostic Imaging - Enters Purchase Agreement to Acquire Teleradiology Company
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Imaging tool may aid nanoelectronics by screening tiny tubes
(Date:12/8/2016)... , Dec. 8, 2016 Savannah River ... technologies and selected NewTechBio,s NT-MAX Lake & ... based beneficial bacteria, in conjunction with Hexa Armor/ ... deficiencies with National Pollutant Discharge Elimination System requirements. ... experienced a steady history of elevated pH levels, ...
(Date:12/7/2016)... ... December 07, 2016 , ... ACEA Biosciences, Inc. presented ... expansion clinical trial for its lead drug candidate, AC0010, at the World Conference ... was to determine the safety, antitumor activity, and recommended phase II dosage of ...
(Date:12/7/2016)... EDMONTON , Dec. 7, 2016 /PRNewswire/ - ... the development and commercialization of immunotherapeutic products for ... has entered into an Antibody Manufacturing Development Program ... , USA) for its oregovomab antibody product. ... its Phase IIb clinical study in ovarian cancer ...
(Date:12/7/2016)... -- The report "Acrylic Processing Aid Market by Polymer Type (PVC), Fabrication Process ... Global Forecast to 2026", published by MarketsandMarkets, the global market size was USD ... 2026, registering an of CAGR of 6.2% between 2016 and 2026. ... ... MarketsandMarkets Logo , ...
Breaking Biology Technology:
(Date:12/6/2016)... Dec. 6, 2016 Valencell , the leading ... has seen a third consecutive year of triple digit ... in 2016 with a 360 percent increase in companies ... increase was driven by sales of its wrist and ... in its technology for hearables for fitness and healthcare ...
(Date:12/2/2016)... PUNE, India , December 1, 2016 /PRNewswire/ ... Market by Authentication type (Fingerprint, Voice), Future Technology (Iris ... Vehicle), and Region - Global Forecast to 2021", ... be USD 442.7 Million in 2016, and is ... 2021, at a CAGR of 14.06%. ...
(Date:11/30/2016)... , Nov. 30, 2016  higi SH llc ... partnership initiative targeting national brands, industry thought-leaders and ... their respective audiences for taking steps to live ... inception in 2012, higi has built the largest ... over 38 million people who have conducted over ...
Breaking Biology News(10 mins):