Navigation Links
IBN develops superior fuel cell material

Singapore, August 24, 2012 Using a mixture of gold, copper and platinum nanoparticles, IBN researchers have developed a more powerful and longer lasting fuel cell material. This breakthrough was published recently in leading journal, Energy and Environmental Science.

Fuel cells are a promising technology for use as a source of electricity to power electronic devices, vehicles, military aircraft and equipment. A fuel cell converts the chemical energy from hydrogen (fuel) into electricity through a chemical reaction with oxygen. A fuel cell can produce electricity continuously as long as there is a fuel supply.

Current commercially available fuel cells use platinum nanoparticles as the catalyst to speed up the chemical reaction because platinum is the only metal that can resist the highly acidic conditions inside such a cell. However, the widespread use of fuel cells has been impeded by the high cost of platinum and its low stability.

To overcome this limitation, a team of researchers led by IBN Executive Director Professor Jackie Y. Ying has discovered that by replacing the central part of the catalyst with gold and copper alloy and leaving just the outer layer in platinum, the new hybrid material can provide 5 times higher activity and much greater stability than the commercial platinum catalyst. With further optimization, it would be possible to further increase the material's catalytic properties.

IBN's new nanocomposite material can produce at least 0.571 amperes of electric current per milligram of platinum, compared to 0.109 amperes per milligram of platinum for commercial platinum catalysts. This is also the first time that a catalyst has been shown to enhance both the stability and activity for the fuel cell reaction with a significantly reduced platinum content.

To make this catalyst more active than the commercial platinum catalyst, the researchers have designed the core of the nanocrsytalline material to be a gold-copper alloy, which has slightly smaller lattice spacing than the platinum coating on the nanocrystal's surface. This creates a compressive strain on the surface platinum atoms, making the platinum more active in the rate-limiting step of oxygen reduction reaction for the fuel cell. Replacing the core of the nanoparticle with the less expensive gold-copper alloy cuts down the usage of platinum, a highly expensive noble metal.

Professor Ying said, "A key research focus at IBN is to develop green energy technologies that can lead to greater efficiency and environmental sustainability. More active and less costly than conventional platinum catalysts, our new nanocomposite system has enabled us to significantly advance fuel cell development and make the technology more practical for industrial applications."

Contact: Elena Tan
Agency for Science, Technology and Research (A*STAR), Singapore

Related biology technology :

1. New England Biolabs Develops Novel Polymerase with Ultra-High Fidelity and Minimal GC Bias
2. UCLA-led research team develops worlds most powerful nanoscale microwave oscillators
3. Medi-Solve Coatings Develops Masking Process for Medical Devices
4. Union Equity, Inc.s Wholly Owned Subsidiary Develops Cream that Aids in Soothing the Symptoms of Chemotherapy
5. College Chairman And Prolific Inventor Develops Life-Saving, Real-Time Diagnostic Technologies
6. Harvards Wyss Institute develops DNA nanorobot to trigger targeted therapeutic responses
7. Quanterix Develops Microfluidic Consumable That Will Enable Next Generation Molecular Diagnostic Systems based on Single Molecule Array Technology
8. Ecology Coatings Develops Coatings Safe for Direct Contact with Food Products
9. UCLA team develops highly efficient method for creating flexible, transparent electrodes
10. NASA develops super-black material that absorbs light across multiple wavelength bands
11. Superior Controls of Seabrook, NH Named System Integrator of the Year for 2012 by Control Engineering Magazine
Post Your Comments:
Related Image:
IBN develops superior fuel cell material
(Date:6/23/2016)... ... 23, 2016 , ... Supplyframe, the Industry Network for electronics ... Lab . Located in Pasadena, Calif., the Design Lab’s mission is to bring ... designed, built and brought to market. , The Design Lab is Supplyframe’s physical ...
(Date:6/23/2016)... June 23, 2016 Apellis Pharmaceuticals, Inc. ... clinical trials of its complement C3 inhibitor, APL-2. ... multiple ascending dose studies designed to assess the ... subcutaneous injection in healthy adult volunteers. ... as a single dose (ranging from 45 to ...
(Date:6/23/2016)... YORK , June 23, 2016 ... trading session at 4,833.32, down 0.22%; the Dow Jones Industrial ... S&P 500 closed at 2,085.45, down 0.17%. has initiated ... INFI ), Nektar Therapeutics (NASDAQ: NKTR ), ... Therapeutics Inc. (NASDAQ: BIND ). Learn more about ...
(Date:6/23/2016)... ... June 23, 2016 , ... Velocity Products, ... tools designed, tuned and optimized exclusively for Okuma CNC machining centers at The ... of a collaboration among several companies with expertise in toolholding, cutting tools, machining ...
Breaking Biology Technology:
(Date:6/22/2016)... 2016  The American College of Medical Genetics and Genomics ... as one of the fastest-growing trade shows during the ... Bellagio in Las Vegas . ... growth in each of the following categories: net square feet ... of attendees. The 2015 ACMG Annual Meeting was ranked 23 ...
(Date:6/16/2016)... 16, 2016 The global ... to reach USD 1.83 billion by 2024, according ... Inc. Technological proliferation and increasing demand in commercial ... to drive the market growth.      ... The development of advanced multimodal techniques for biometric ...
(Date:6/3/2016)... 2016 Das DOTM ... Nepal hat ein 44 Millionen ... Kennzeichen, einschließlich Personalisierung, Registrierung und IT-Infrastruktur, an ... und Implementierung von Identitätsmanagementlösungen. Zahlreiche renommierte internationale ... teilgenommen, aber Decatur wurde als konformste und ...
Breaking Biology News(10 mins):