Navigation Links
Human muscle stem cell therapy gets help from zebrafish

Harvard Stem Cell Scientists have discovered that the same chemicals that stimulate muscle development in zebrafish can also be used to differentiate human stem cells into muscle cells in the laboratory, an historically challenging task that, now overcome, makes muscle cell therapy a more realistic clinical possibility.

The work, published this week in the journal Cell, began with a discovery by Boston Children's Hospital researchers, led by Leonard Zon, MD, and graduate student Cong (Tony) Xu, who tested 2,400 different chemicals in cultures of zebrafish embryo cells to determine if any could increase the numbers of muscle cells formed. Using fluorescent reporter fish in which muscle cells were visible during their creation, the researchers found six chemicals that were very effective at promoting muscle formation.

Zon shared his results with Harvard Department of Stem Cell and Regenerative Biology professor Amy Wagers, PhD, and Mohammadsharif Tabebordbar, a graduate student in her laboratory, who tested the six chemicals in mice. One of the six, called forskolin, was found to increase the numbers of muscle stem cells from mice that could be obtained when these cells were grown in laboratory dishes. Moreover, the cultured cells successfully integrated into muscle when transplanted back into mice.

Inspired by the successful application of these chemicals in mice, Salvatore Iovino, PhD, a joint postdoctoral fellow in the Wagers lab and the lab of C. Ronald Kahn, MD, at the Joslin Diabetes Center, investigated whether the chemicals would also affect human cells and found that a combination of three chemicals, including forskolin, could induce differentiation of human induced pluripotent stem (iPS) cells, made by reprogramming skin cells. Exposure of iPS cells to these chemicals converted them into skeletal muscle, an outcome the Wagers and Kahn labs had been striving to achieve for years using conventional methods. When transplanted into a mouse, the human iPS-derived muscle cells also contributed to muscle repair, offering early promise that this protocol could provide a route to muscle stem cell therapy in humans.

The interdisciplinary, cross-laboratory collaboration between Zon, Wagers, and Kahn highlights the advantage of open exchange between researchers. "If we had done this screen directly on human iPS cells, it would have taken at least 10 times as long and cost 100 times as much," said Wagers. "The zebrafish gave us a big advantage here because it has a fast generation time, rapid development, and can be easily and relatively cheaply screened in a culture dish."

"This research demonstrates that over 300 million years of evolution, the pathways used in the fish are conserved through vertebrates all the way up to the human," said Wagers' fellow HSCRB professor Leonard Zon, chair of the Harvard Stem Cell Institute Executive Committee and director of the stem cell program at Boston Children's Hospital. "We can now make enough human muscle progenitors in a dish to allow us to model diseases of the muscle lineage, like Duchenne muscular dystrophy, conduct drug screens to find chemicals that correct those disease, and in the long term, efficiently transplant muscle stem cells into a patient."

In a similar biomedical application, Kahn, who is chief academic officer at the Joslin, plans to apply the new ability to quickly produce muscle stem cells for diabetes research. His lab will generate iPS-derived muscle cells from people who are at risk for diabetes and people who have diabetes to identify alterations that lead to insulin resistance in the muscle.

Going forward, Zon plans to apply this platform of cross-species discovery to other stem cell lines, including those involved in blood and eye development. "We have a new system to use to study tissue development, and it's not just muscle that can be studied, every single organ can be studied in the zebrafish system," he said.


Contact: B. D. Colen
Harvard University

Related biology technology :

1. Integrated 3-D Imaging Facilitates Human Face Transplantation
2. Roche NimbleGen and BGI Develop Advanced MHC Region Capture Technology for Human Disease and Biomedical Research
3. Singapore scientists lead human embryonic stem cell study
4. AFFiRiS AG Invests Into Human Capital - Chief Business Officer Recruited
5. ReproCELL Licensed Commercialization Right on Human iPS Cell Derived Hepatocytes - Expected Launch in Q2 2012
6. Cepheid Welcomes Senior Vice President of Human Resources
7. deCODE Genetics, in Collaboration with Academic Colleagues, Discovers Three Variants in the Sequence of the Human Genome that Affect the Risk of Thyroid Cancer
8. Foundation for Angelman Syndrome Therapeutics (FAST) Funds Human Clinical Trial
9. Successful human tests for first wirelessly controlled drug-delivery chip
10. First successful human results achieved: Implantable wireless microchip drug delivery device
11. Human Pheromone Sciences Voluntarily Files With SEC for Termination of Registration
Post Your Comments:
(Date:11/24/2015)... , ... November 24, 2015 , ... This fall, global ... competitive events in five states to develop and pitch their BIG ideas to improve ... each state are competing for votes to win the title of SAP's Teen Innovator, ...
(Date:11/24/2015)... 2015 --> ... released by Transparency Market Research, the global non-invasive prenatal ... of 17.5% during the period between 2014 and 2022. ... Industry Analysis, Size, Volume, Share, Growth, Trends and Forecast ... market to reach a valuation of US$2.38 bn by ...
(Date:11/24/2015)... , Nov. 24, 2015  Twist Bioscience, ... that Emily Leproust, Ph.D., Twist Bioscience chief executive ... Healthcare Conference on December 1, 2015 at 3:10 ... in New York City. --> ... . Twist Bioscience is on Twitter. Sign ...
(Date:11/24/2015)... , ... November 24, 2015 , ... ... OrthoAccel® Technologies, Inc., on being named to Deloitte's 2015 Technology Fast 500 list ... facility, OrthoAccel manufactures AcceleDent®, a FDA-cleared, Class II medical device that speeds up ...
Breaking Biology Technology:
(Date:11/9/2015)... Nov. 09, 2015 ... of the "Global Law Enforcement Biometrics ... --> ) has announced ... Enforcement Biometrics Market 2015-2019" report to ... Markets ( ) has announced the ...
(Date:11/4/2015)... 2015 --> ... by Transparency Market Research "Home Security Solutions Market - Global ... - 2022", the global home security solutions market is expected to ... The market is estimated to expand at a CAGR ... 2022. Rising security needs among customers at homes, the ...
(Date:10/29/2015)... 2015   MedNet Solutions , an innovative SaaS-based ... clinical research, is pleased to announce that it has ... as one of only three finalists for a ... and Growing" category. The Tekne Awards honor Minnesota ... technology innovation and leadership. iMedNet™ eClinical ...
Breaking Biology News(10 mins):