Navigation Links
How do you cut a nanotube? Lots of compression
Date:12/17/2010

PROVIDENCE, R.I. [Brown University] A pipefitter knows how to make an exact cut on a metal rod. But it's far harder to imagine getting a precise cut on a carbon nanotube, with a diameter 1/50,000th the thickness of a human hair.

In a paper published this month in the British journal Proceedings of the Royal Society A, researchers at Brown University and in Korea document for the first time how single-walled carbon nanotubes are cut, a finding that could lead to producing more precise, higher-quality nanotubes. Such manufacturing improvements likely would make the nanotubes more attractive for use in automotive, biomedicine, electronics, energy, optics and many other fields.

"We can now design the cutting rate and the diameters we want to cut," said Kyung-Suk Kim, professor of engineering in the School of Engineering at Brown and the corresponding author on the paper.

The basics of carbon nanotube manufacturing are known. Single-atom thin graphene sheets are immersed in solution (usually water), causing them to look like a plate of tangled spaghetti. The jumbled bundle of nanotubes is then blasted by high-intensity sound waves that create cavities (or partial vacuums) in the solution. The bubbles that arise from these cavities expand and collapse so violently that the heat in each bubble's core can reach more than 5,000 degrees Kelvin, close to the temperature on the surface of the sun. Meanwhile, each bubble compresses at an acceleration 100 billion times greater than gravity. Considering the terrific energy involved, it's hardly surprising that the tubes come out at random lengths. Technicians use sieves to get tubes of the desired length. The technique is inexact partly because no one was sure what caused the tubes to fracture.

Materials scientists initially thought the super-hot temperatures caused the nanotubes to tear. A group of German researchers proposed that it was the sonic boomlets caused by collapsing bubbles that pulled the tubes apart, like a rope tugged so violently at each end that it eventually rips.

Kim, Brown postdoctoral researcher Huck Beng Chew, and engineers at the Korea Institute of Science and Technology decided to investigate further. They crafted complex molecular dynamics simulations using an array of supercomputers to tease out what caused the carbon nanotubes to break. They found that rather than being pulled apart, as the German researchers had thought, the tubes were being compressed mightily from both ends. This caused a buckling in a roughly five-nanometer section along the tubes called the compression-concentration zone. In that zone, the tube is twisted into alternating 90-degree-angle folds, so that it fairly resembles a helix.

That discovery still did not explain fully how the tubes are cut. Through more computerized simulations, the group learned the mighty force exerted by the bubbles' sonic booms caused atoms to be shot off the tube's lattice-like foundation like bullets from a machine gun.

"It's almost as if an orange is being squeezed, and the liquid is shooting out sideways," Kim said. "This kind of fracture by compressive atom ejection has never been observed before in any kind of materials."

The team confirmed the computerized simulations through laboratory tests involving sonication and electron microscopy of single-walled carbon nanotubes.

The group also learned that cutting single-walled carbon nanotubes using sound waves in water creates multiple kinks, or bent areas, along the tubes' length. The kinks are "highly attractive intramolecular junctions for building molecular-scale electronics," the researchers wrote.


'/>"/>

Contact: Richard Lewis
Richard_Lewis@brown.edu
401-863-3766
Brown University
Source:Eurekalert  

Related biology technology :

1. Osseon™ Treats 1,000 Patients With Osseoplasty™ Procedure for Vertebral Compression Fractures
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
How do you cut a nanotube? Lots of compression
(Date:1/19/2017)... ... January 19, 2017 , ... ... software to leading biopharmaceutical and medical device manufacturers and regulators, is proud to ... CFR Part 11-compliant email client designed to provide product vigilance departments with the ...
(Date:1/19/2017)... ... January 18, 2017 , ... The ... (NIH) to update its Data Sharing Policy. Specifically, the nation’s leading informatics experts, ... subject to the existing policy. AMIA recommended that NIH earmark funding for researchers ...
(Date:1/19/2017)... YORK , Jan. 18, 2017 ... to reach USD 92.9 billion by 2025, according ... Inc. Pharmaceutical industry has been adaptive of the ... as early as 2002. Among the services outsourced, ... forerunners. For instance, Johnson & Johnson was the ...
(Date:1/18/2017)... ... January 18, 2017 , ... Opal Kelly, ... USB or PCI Express, announced the ZEM5310 USB 3.0 FPGA Module, combining a ... compact business-card sized form factor suitable for prototyping, testing, and production-ready integration. The ...
Breaking Biology Technology:
(Date:12/16/2016)... The global wearable medical device market, in terms of ... USD 5.31 billion in 2016, at a CAGR of 18.0% during ... ... in medical devices, launch of a growing number of smartphone-based healthcare ... healthcare providers, and increasing focus on physical fitness. ...
(Date:12/15/2016)... , Dec. 15, 2016  There is much more ... or starting the engine. Continental will demonstrate the intelligence ... Las Vegas . Through the combination of the ... Entry) and biometric elements, the international technology company is ... personalization and authentication. "The integration of biometric ...
(Date:12/7/2016)... 2016 According to a new market research report "Emotion ... Expression, Voice Recognition), Service, Application Area, End User, And Region - Global Forecast ... USD 6.72 Billion in 2016 to USD 36.07 Billion by 2021, at a ... Reading ... MarketsandMarkets Logo ...
Breaking Biology News(10 mins):