Navigation Links
High-strength silk scaffolds improve bone repair
Date:4/30/2012

MEDFORD/SOMERVILLE, Mass. (April 30, 2012, 3 PM EDT) -- Biomedical engineers at Tufts University's School of Engineering have demonstrated the first all-polymeric bone scaffold material that is fully biodegradable and capable of providing significant mechanical support during repair. The new technology uses micron-sized silk fibers to reinforce a silk matrix, much as steel rebar reinforces concrete. It could improve the way bones and other tissues are repaired following accident or disease.

The discovery is reported in the Proceedings of the National Academy of Sciences Online Early Edition the week of April 30-May 4, 2012.

In the U.S. an estimated 1.3 million people undergo bone graft surgeries each year, notes the paper.

Human bones are hard but relatively lightweight, able to withstand considerable pressure while being sufficiently elastic to withstand moderate torsion. Inside the hard, mineralized tissue is a matrix in which bone cells can proliferate and adhere. Natural bone is the obvious choice for grafts.

However autologous grafts mean putting the patient through additional surgery and the supply of self-donated tissue is, obviously, limited. Donor grafts pose risks of disease, graft rejection and other long-term complications.

A handful of all-polymeric biomaterials, such as collagen, are currently used for bone regeneration, but they lack strength. Incorporating ceramics or metals into polymers improves mechanical properties but such composites often sacrifice optimum bone remodeling and regeneration.

By bonding silk protein microfibers to a silk protein scaffold, the Tufts bioengineers were able to develop a fully biodegradable composite with high-compressive strength and improved cell responses related to bone formation in vitro.

The study found that silk microfiber-protein composite matrices mimicked the mechanical features of native bone including matrix stiffness and surface roughness that enhanced human mesenchymal stem cell differentiation compared to control silk sponges. In combination with inherent silk fiber strength, compact fiber reinforcement enhanced compressive properties within the scaffolds.

"By adding the microfibers to the silk scaffolds, we get stronger mechanical properties as well as better bone formation. Both structure and function are improved," said David Kaplan, Ph.D., chair of biomedical engineering at Tufts University. "This approach could be used for many other tissue systems where control of mechanical properties is useful and has broad applications for regenerative medicine."

Other authors on the paper were Biman B. Mandal, former post doctoral associate in the Department of Biomedical Engineering at Tufts and now in the Department of Biotechnology, Indian Institute of Technology; visiting biomedical engineering student Ariela Grinberg, who recently completed her degree in the Department of Tissue Engineering, Cell Therapy and Regenerative Medicine at the National Institute of Rehabilitation, Mexico; and Eun Seok Gil and Bruce Panilaitis, research associate and research assistant professor respectively in the Department of Biomedical Engineering at Tufts.

The Tufts scientists used a novel approach to manufacturing the silk microfibers: applying alkaline hydrolysis (the use of alkali chemicals to break down complex molecules into their building blocks). This greatly reduced the time and cost of making the microfibers in a variety of sizes. Microfibers ranging from 10 to 20 um were obtained in one minute, compared with production of 100 um plus size fibers after 12 minutes of conventional processing.

Although significant improvements in compressive properties were observed in the silk composite scaffolds, values were still significantly lower than that of stronger native bone. The Tufts researchers suggest that such scaffolds can play a valuable role as temporary biodegradable support for native cells to grow and replace.


'/>"/>

Contact: Kim Thurler
kim.thurler@tufts.edu
617-627-3175
Tufts University
Source:Eurekalert

Related biology technology :

1. Self-assembling polymer arrays improve data storage potential
2. Beaumont Doctors Invention Improves Cataract Surgery Outcomes
3. Early-Bird Registration Ends this Week for 10th Annual Quality Excellence Conference: How Process Improvement Leaders Produce Profits in Recessions
4. Carilion Clinic Invests in Sight Saving Technology to Improve Patient Care: Carilion Clinic Teams Up with Retasure
5. Germicidal UVC Lights Improve Clinical Pregnancy Rates for IVF Lab, New Study Finds
6. Sanofi Aventis : New Study Results Support the "Basal Plus" Strategy With LANTUS(R) and APIDRA(R) to Improve Blood Sugar Control in Patients With Type 2 Diabetes
7. Enobia Pharma Presents PreClinical Data Showing ENB-0040 Significantly Improved Survival and Healed Skeletal Manifestations of Severe Hypophosphatasia in Mice
8. Global Psychiatrists Unite to Improve Services in Mental Health
9. Kelly Osbourne and International Health Groups Call for Improved Education on Choices and Usage of Contraception
10. Commonwealth Care Alliance Selects Casenet To Unify Patient Information and Improve Care for Massachusetts Members
11. Finesse Solutions Launches Improved E-Store for Sensors and Transmitters
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:10/7/2017)... ... October 06, 2017 , ... ... genomic technologies, launched its ProxiMeta™ Hi-C metagenome deconvolution product, featuring the first ... accompanying cloud-based bioinformatics software to perform Hi-C metagenome deconvolution using their own ...
(Date:10/6/2017)... ... October 06, 2017 , ... ... the healthcare and technology sector at their fourth annual Conference where founders, investors, ... inspiring speakers and the ELEVATE pitch competition showcasing early stage digital health and ...
(Date:10/5/2017)... ... 2017 , ... LabRoots , the leading provider of educational and interactive ... back to cancer research with a month-long promotion supporting the advancement of breast cancer ... can use promo code PinkRibbon to get 10 percent off their purchase of every ...
(Date:10/5/2017)... ... 05, 2017 , ... NIH has awarded Circulomics two SBIR ... extraction technology . Nanobind is a novel magnetic disk that contains a high ... used for a wide variety of sample preparation applications. The nanostructured surface provides ...
Breaking Biology Technology:
(Date:4/18/2017)... a global expert in SoC-based imaging and computing solutions, has developed ... the company,s hybrid codec technology. A demonstration utilizing TeraFaces ® , ... showcased during the upcoming Medtec Japan at Tokyo Big Sight April ... Vegas Convention Center April 24-27. ... Click here for an image of the M820 ...
(Date:4/13/2017)... , April 13, 2017 According to a new ... Authentication, Identity Analytics, Identity Administration, and Authorization), Service, Authentication Type, Deployment Mode, ... IAM Market is expected to grow from USD 14.30 Billion in 2017 ... (CAGR) of 17.3%. ... MarketsandMarkets Logo ...
(Date:4/11/2017)... April 11, 2017 No two people ... at the New York University Tandon School of ... have found that partial similarities between prints are ... in mobile phones and other electronic devices can ... The vulnerability lies in the fact that fingerprint-based ...
Breaking Biology News(10 mins):