Navigation Links
High-strength silk scaffolds improve bone repair
Date:4/30/2012

MEDFORD/SOMERVILLE, Mass. (April 30, 2012, 3 PM EDT) -- Biomedical engineers at Tufts University's School of Engineering have demonstrated the first all-polymeric bone scaffold material that is fully biodegradable and capable of providing significant mechanical support during repair. The new technology uses micron-sized silk fibers to reinforce a silk matrix, much as steel rebar reinforces concrete. It could improve the way bones and other tissues are repaired following accident or disease.

The discovery is reported in the Proceedings of the National Academy of Sciences Online Early Edition the week of April 30-May 4, 2012.

In the U.S. an estimated 1.3 million people undergo bone graft surgeries each year, notes the paper.

Human bones are hard but relatively lightweight, able to withstand considerable pressure while being sufficiently elastic to withstand moderate torsion. Inside the hard, mineralized tissue is a matrix in which bone cells can proliferate and adhere. Natural bone is the obvious choice for grafts.

However autologous grafts mean putting the patient through additional surgery and the supply of self-donated tissue is, obviously, limited. Donor grafts pose risks of disease, graft rejection and other long-term complications.

A handful of all-polymeric biomaterials, such as collagen, are currently used for bone regeneration, but they lack strength. Incorporating ceramics or metals into polymers improves mechanical properties but such composites often sacrifice optimum bone remodeling and regeneration.

By bonding silk protein microfibers to a silk protein scaffold, the Tufts bioengineers were able to develop a fully biodegradable composite with high-compressive strength and improved cell responses related to bone formation in vitro.

The study found that silk microfiber-protein composite matrices mimicked the mechanical features of native bone including matrix stiffness and surface roughness that enhanced human mesenchymal stem cell differentiation compared to control silk sponges. In combination with inherent silk fiber strength, compact fiber reinforcement enhanced compressive properties within the scaffolds.

"By adding the microfibers to the silk scaffolds, we get stronger mechanical properties as well as better bone formation. Both structure and function are improved," said David Kaplan, Ph.D., chair of biomedical engineering at Tufts University. "This approach could be used for many other tissue systems where control of mechanical properties is useful and has broad applications for regenerative medicine."

Other authors on the paper were Biman B. Mandal, former post doctoral associate in the Department of Biomedical Engineering at Tufts and now in the Department of Biotechnology, Indian Institute of Technology; visiting biomedical engineering student Ariela Grinberg, who recently completed her degree in the Department of Tissue Engineering, Cell Therapy and Regenerative Medicine at the National Institute of Rehabilitation, Mexico; and Eun Seok Gil and Bruce Panilaitis, research associate and research assistant professor respectively in the Department of Biomedical Engineering at Tufts.

The Tufts scientists used a novel approach to manufacturing the silk microfibers: applying alkaline hydrolysis (the use of alkali chemicals to break down complex molecules into their building blocks). This greatly reduced the time and cost of making the microfibers in a variety of sizes. Microfibers ranging from 10 to 20 um were obtained in one minute, compared with production of 100 um plus size fibers after 12 minutes of conventional processing.

Although significant improvements in compressive properties were observed in the silk composite scaffolds, values were still significantly lower than that of stronger native bone. The Tufts researchers suggest that such scaffolds can play a valuable role as temporary biodegradable support for native cells to grow and replace.


'/>"/>

Contact: Kim Thurler
kim.thurler@tufts.edu
617-627-3175
Tufts University
Source:Eurekalert

Related biology technology :

1. Self-assembling polymer arrays improve data storage potential
2. Beaumont Doctors Invention Improves Cataract Surgery Outcomes
3. Early-Bird Registration Ends this Week for 10th Annual Quality Excellence Conference: How Process Improvement Leaders Produce Profits in Recessions
4. Carilion Clinic Invests in Sight Saving Technology to Improve Patient Care: Carilion Clinic Teams Up with Retasure
5. Germicidal UVC Lights Improve Clinical Pregnancy Rates for IVF Lab, New Study Finds
6. Sanofi Aventis : New Study Results Support the "Basal Plus" Strategy With LANTUS(R) and APIDRA(R) to Improve Blood Sugar Control in Patients With Type 2 Diabetes
7. Enobia Pharma Presents PreClinical Data Showing ENB-0040 Significantly Improved Survival and Healed Skeletal Manifestations of Severe Hypophosphatasia in Mice
8. Global Psychiatrists Unite to Improve Services in Mental Health
9. Kelly Osbourne and International Health Groups Call for Improved Education on Choices and Usage of Contraception
10. Commonwealth Care Alliance Selects Casenet To Unify Patient Information and Improve Care for Massachusetts Members
11. Finesse Solutions Launches Improved E-Store for Sensors and Transmitters
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:10/11/2017)... ... October 11, 2017 , ... ComplianceOnline’s Medical Device Summit is back for ... June 2018 in San Francisco, CA. The Summit brings together current and former FDA ... board directors and government officials from around the world to address key issues in ...
(Date:10/11/2017)... LAGUNA HILLS, Calif. , Oct. 11, 2017 ... London (ICR) and University of ... prognostic tool to risk-stratify patients with multiple myeloma (MM), in ... nine . The University of Leeds ... by Myeloma UK, and ICR will perform the testing services ...
(Date:10/11/2017)... ... October 11, 2017 , ... ... has granted orphan drug designation to SBT-100, its novel anti-STAT3 (Signal Transducer and ... of osteosarcoma. SBT-100 is able to cross the cell membrane and bind intracellular ...
(Date:10/10/2017)... ... October 10, 2017 , ... For the second ... a US2020 STEM Mentoring Award. Representatives of the FirstHand program travelled to Washington, ... from US2020. , US2020’s mission is to change the trajectory of STEM education ...
Breaking Biology Technology:
(Date:4/5/2017)... 4, 2017 KEY FINDINGS The ... at a CAGR of 25.76% during the forecast period ... primary factor for the growth of the stem cell ... MARKET INSIGHTS The global stem cell market ... and geography. The stem cell market of the product ...
(Date:3/30/2017)... -- Trends, opportunities and forecast in this market to ... AFIS, iris recognition, facial recognition, hand geometry, vein recognition, ... industry (government and law enforcement, commercial and retail, health ... and by region ( North America , ... , and the Rest of the World) ...
(Date:3/24/2017)... Mar 24, 2017 Research and Markets has ... Market Analysis & Trends - Industry Forecast to 2025" report ... ... at a CAGR of around 15.1% over the next decade to ... report analyzes the market estimates and forecasts for all the given ...
Breaking Biology News(10 mins):