Navigation Links
High pressure gold nanocrystal structure revealed
Date:4/10/2013

A major breakthrough in measuring the structure of nanomaterials under extremely high pressure has been made by researchers at the London Centre for Nanotechnology (LCN).

Described in Nature Communications, the study used new advances in x-ray diffraction to image the changes in morphology of gold nanocrystals under pressures of up to 6.5 gigapascals.

Under high pressures, imaging methods such as electron or atomic force microscopy are not viable, making x-ray diffraction imaging the only option. However, until recently, focusing an image created with this method has proved difficult.

Using a technique developed by LCN researchers to correct the distortions of the x-ray beams, the scientists, working in collaboration with the Carnegie Institution of Washington, have now been able to measure the structure of gold nanocrystals in higher resolution than ever before.

Professor Ian Robinson, who led the LCN's contribution to the study, said: "Solving the distortion problem of the x-ray diffraction images is analogous to prescribing eye glasses to correct vision.

"Now this problem has been solved, we can access the whole field of nanocrystal structures under pressure. The scientific mystery of why nanocrystals under pressure are up to 50% stronger than bulk material may soon be unravelled."

To carry out the research, a 400 nm diameter gold nanocrystal was put into a device called a Diamond-Anvil Cell (DAC) which can recreate the immense pressures which exist deep inside the Earth, creating materials and phases which do not exist under normal conditions.

The sample was crushed within the device and the changes were imaged as the pressure, measured by a small ruby sphere, was increased. The study showed that under low pressure, the nanocrystal acted as expected and the edges became strained, however, surprisingly, the strains disappeared under further compression.

The scientists explain this by suggesting that the pressurised material is undergoing "plastic flow", a phenomenon whereby a material will start to flow and become liquid once it reaches a critical pressure. This hypothesis was further supported when the faceted shape of the crystal developed a smoother and rounder shape as the pressure increased.

Professor Robinson added "This development has great potential for exploring the formation of minerals within the Earth's crust, which transform from one phase to another under pressure"

In the future, this technique offers a very promising approach for in-situ nanotechnology development under high pressures.


'/>"/>

Contact: Clare Ryan
clare.ryan@ucl.ac.uk
44-020-310-83846
University College London
Source:Eurekalert

Related biology technology :

1. Pressure BioSciences, Inc. Reaches Agreement with Investors on Initial $600,000 Tranche of $1.2 Million Above-Market Private Placement; Proceeds to Support Continued Commercialization of PCT Product Platform
2. Pressure BioSciences, Inc. Continues Global Sales Reach Expansion with Distribution Agreements for China, Vietnam, Laos, Cambodia, Australia, and New Zealand
3. Pressure BioSciences, Inc. Appoints Conrad F. Mir as Chief Financial Officer
4. New Applications of Pressure BioSciences PCT Platform Prominently Featured at Scientific Conference on Technologies for Protein Research
5. Further Advancements Made in the Development of an Improved Method For Rape Kit Testing Using Pressure BioSciences Patented Pressure Cycling Technology (PCT)
6. On the road to plasmonics with silver polyhedral nanocrystals
7. Nanocrystals make dentures shine
8. First atomic-scale real-time movies of platinum nanocrystal growth in liquids
9. Nanotechnology for Drug Delivery: Global Market for Nanocrystals
10. Novel technique to synthesize nanocrystals that harvest solar energy
11. Engineers achieve longstanding goal of stable nanocrystalline metals
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:10/10/2017)... Philadelphia, PA (PRWEB) , ... October 10, 2017 ... ... University City Science Center’s FirstHand program has won a US2020 STEM Mentoring Award. ... accept the award for Excellence in Volunteer Experience from US2020. , US2020’s mission ...
(Date:10/10/2017)... , ... October 10, 2017 , ... ... and business process optimization firm for the life sciences and healthcare industries, announces ... conference in San Francisco. , The presentation, “Automating GxP Validation for Agile Cloud ...
(Date:10/9/2017)... ... , ... At its national board meeting in North Carolina, ARCS® Foundation ... of Physics and Astronomy, has been selected for membership in ARCS Alumni Hall ... 2015 Breakthrough Prize in Fundamental physics for the discovery of the accelerating expansion of ...
(Date:10/7/2017)... Seattle, WA (PRWEB) , ... ... ... the industry leader in Hi-C-based genomic technologies, launched its ProxiMeta™ Hi-C metagenome ... the ProxiMeta Hi-C kit and accompanying cloud-based bioinformatics software to perform Hi-C ...
Breaking Biology Technology:
(Date:3/30/2017)... 30, 2017 The research team of The ... (3D) fingerprint identification by adopting ground breaking 3D fingerprint minutiae recovery ... of speed and accuracy for use in identification, crime investigation, immigration ... ... A research team ...
(Date:3/28/2017)... 28, 2017 The report "Video ... Monitors, Servers, Storage Devices), Software (Video Analytics, VMS), and ... Global Forecast to 2022", published by MarketsandMarkets, the market ... is projected to reach USD 75.64 Billion by 2022, ... The base year considered for the study is 2016 ...
(Date:3/24/2017)... Research and Markets has announced the addition of the "Global ... to 2025" report to their offering. ... The Global Biometric Vehicle Access System Market ... the next decade to reach approximately $1,580 million by 2025. ... for all the given segments on global as well as regional ...
Breaking Biology News(10 mins):