Navigation Links
High pressure gold nanocrystal structure revealed
Date:4/10/2013

A major breakthrough in measuring the structure of nanomaterials under extremely high pressure has been made by researchers at the London Centre for Nanotechnology (LCN).

Described in Nature Communications, the study used new advances in x-ray diffraction to image the changes in morphology of gold nanocrystals under pressures of up to 6.5 gigapascals.

Under high pressures, imaging methods such as electron or atomic force microscopy are not viable, making x-ray diffraction imaging the only option. However, until recently, focusing an image created with this method has proved difficult.

Using a technique developed by LCN researchers to correct the distortions of the x-ray beams, the scientists, working in collaboration with the Carnegie Institution of Washington, have now been able to measure the structure of gold nanocrystals in higher resolution than ever before.

Professor Ian Robinson, who led the LCN's contribution to the study, said: "Solving the distortion problem of the x-ray diffraction images is analogous to prescribing eye glasses to correct vision.

"Now this problem has been solved, we can access the whole field of nanocrystal structures under pressure. The scientific mystery of why nanocrystals under pressure are up to 50% stronger than bulk material may soon be unravelled."

To carry out the research, a 400 nm diameter gold nanocrystal was put into a device called a Diamond-Anvil Cell (DAC) which can recreate the immense pressures which exist deep inside the Earth, creating materials and phases which do not exist under normal conditions.

The sample was crushed within the device and the changes were imaged as the pressure, measured by a small ruby sphere, was increased. The study showed that under low pressure, the nanocrystal acted as expected and the edges became strained, however, surprisingly, the strains disappeared under further compression.

The scientists explain this by suggesting that the pressurised material is undergoing "plastic flow", a phenomenon whereby a material will start to flow and become liquid once it reaches a critical pressure. This hypothesis was further supported when the faceted shape of the crystal developed a smoother and rounder shape as the pressure increased.

Professor Robinson added "This development has great potential for exploring the formation of minerals within the Earth's crust, which transform from one phase to another under pressure"

In the future, this technique offers a very promising approach for in-situ nanotechnology development under high pressures.


'/>"/>

Contact: Clare Ryan
clare.ryan@ucl.ac.uk
44-020-310-83846
University College London
Source:Eurekalert

Related biology technology :

1. Pressure BioSciences, Inc. Reaches Agreement with Investors on Initial $600,000 Tranche of $1.2 Million Above-Market Private Placement; Proceeds to Support Continued Commercialization of PCT Product Platform
2. Pressure BioSciences, Inc. Continues Global Sales Reach Expansion with Distribution Agreements for China, Vietnam, Laos, Cambodia, Australia, and New Zealand
3. Pressure BioSciences, Inc. Appoints Conrad F. Mir as Chief Financial Officer
4. New Applications of Pressure BioSciences PCT Platform Prominently Featured at Scientific Conference on Technologies for Protein Research
5. Further Advancements Made in the Development of an Improved Method For Rape Kit Testing Using Pressure BioSciences Patented Pressure Cycling Technology (PCT)
6. On the road to plasmonics with silver polyhedral nanocrystals
7. Nanocrystals make dentures shine
8. First atomic-scale real-time movies of platinum nanocrystal growth in liquids
9. Nanotechnology for Drug Delivery: Global Market for Nanocrystals
10. Novel technique to synthesize nanocrystals that harvest solar energy
11. Engineers achieve longstanding goal of stable nanocrystalline metals
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:2/20/2017)... ... February 20, 2017 , ... ... patients, prevent chest wall collapses in pre-term infants with respiratory distress, and ... total of $600,000 in funding through the ninth round of the University ...
(Date:2/19/2017)... ... February 19, 2017 , ... ... OHAUS Corporation ventured outside of weighing equipment with the goal of expanding the ... in mind, the line of Starter water analysis meters were introduced into the ...
(Date:2/17/2017)... 17, 2017 According to ... Product (Consumables, Service), Type (Safety, Efficacy, Validation), Disease ... Discovery and Development, Disease-Risk) - Global Forecast to ... to reach USD 53.34 Billion by 2021 from ... CAGR of 13.8% during the forecast period (2016-2021). ...
(Date:2/16/2017)... Brussels, Belgium (PRWEB) , ... February 16, 2017 , ... ... Development (SIOTAD) framework primarily aimed at the agricultural industry. Pilot studies are about to ... phytosanitary products through IoT, Big Data and 5G innovations. The concept is expected to ...
Breaking Biology Technology:
(Date:2/2/2017)... 2, 2017  EyeLock LLC, a market leader of ... paper " What You Should Know About Biometrics in ... user authenticity is a growing concern. In traditional schemes, ... However, traditional authentication schemes such as username/password suffer from ... authentication offers an elegant solution to the problem of ...
(Date:1/30/2017)... , Jan. 30, 2017   Invitae Corporation ... growing genetic information companies, today announced that it will ... and provide 2017 guidance on Monday, February 13, 2017, ... that day at 4:45 p.m. Eastern / 1:45 p.m. ... team will briefly review financial results, guidance, and recent ...
(Date:1/24/2017)... 2017 Biopharm Reports has carried out ... of nuclear magnetic resonance spectroscopy (NMR). This involved ... current practices, developments, trends and end-user plans over ... and opportunities. These areas include growth in the ... and innovation requirements, hyphenated NMR techniques, main suppliers ...
Breaking Biology News(10 mins):