Navigation Links
Heavier hydrogen on the atomic scale reduces friction
Date:11/2/2007

Scientists may be one step closer to understanding the atomic forces that cause friction, thanks to a recently published study by researchers from the University of Pennsylvania, the University of Houston and the U.S. Department of Energy's Argonne National Laboratory.

The research, led by Robert Carpick of the University of Pennsylvania, found a significant difference in friction exhibited by diamond surfaces that had been coated with different isotopes of hydrogen and then rubbed against a small carbon-coated tip.

Scientists lack a comprehensive model of friction on the nanoscale and only generally grasp its atomic-level causes, which range from local chemical reactions to electronic interactions to phononic, or vibrational, resonances.

To investigate the latter, Argonne scientist Anirudha Sumant and his colleagues used single-crystal diamond surfaces coated with layers of either atomic hydrogen or deuterium, a hydrogen atom with an extra neutron. The deuterium-terminated diamonds had lower friction forces because of their lower vibrational frequencies, an observation that Sumant attributed to that isotope's larger mass. They have also observed same trend on a silicon substrate, which is structurally similar to that of diamond.

Previous attempts to make hydrogen-terminated diamond surfaces relied on the use of plasmas, which tended to etch the material.

"When you're looking at such a small isotopic defect, an objectively tiny change in the mass, you have to be absolutely sure that there are no other complicating effects caused by chemical or electronic interferences or by small topographic variations," Sumant said. "The nanoscale roughening of the diamond surface from the ion bombardment during the hydrogen or deuterium termination process, even though it was at very low level, remained one of our principal concerns."

Sumant and his collaborators had looked at a number of other ways to try to avoid etching, even going to such lengths as to soak the films in olive oil before applying the hydrogen layers. However, no method had provided a smooth, defect-free hydrogen layer with good coverage that would avoid generating background noise, he said.

However, while performing work at the University of Wisconsin-Madison, Sumant developed a system for depositing diamond thin films. The technique, called hot filament chemical vapor deposition, involves the heating of a tungsten filament (like those found in incandescent light bulbs) to over 2000 degrees Celsius.

If the diamond film is exposed to a flow of molecular hydrogen while sitting within a centimeter of the hot filament, the heat will cause the molecular hydrogen to break down into atomic hydrogen, which will react with the film's surface to create a perfectly smooth layer. Since this method does not require the use of plasma, there is no danger of ion-induced etching.

"We've proved that this is a gentler method of terminating a diamond surface," Sumant said.

Sumant said that he hopes to use the knowledge gained from the experiment to eventually discover a way to manipulate the friction of surfaces on the atomic level. Such a result would prove immensely valuable to the development of nanoelectromechanical systems, or NEMS, based on diamonds, one of Sumant's primary research interests at Argonne's Center for Nanoscale Materials.


'/>"/>

Contact: Steve McGregor
smcgregor@anl.gov
630-252-5580
DOE/Argonne National Laboratory
Source:Eurekalert

Related biology technology :

1. Preparative Nondenaturing Gel Electrophoresis to Purify NADP-Specific Glutamate Dehydrogenase From Chlorella, Rev B
2. Virent enters agreement with Shell Oil unit to make hydrogen with biomass
3. Virent gets $1.4 million investment for its hydrogen technology
4. UW students compete to make hydrogen cars, other renewable projects
5. Modine Manufacturing makes hydrogen generator with ChevronTexaco
6. Virent receives $2 million boost for hydrogen energy research
7. UW engineers clear bottleneck in hydrogen production
8. Virent shows off its hydrogen-fuel plans
9. Kodak in vivo imaging system: precise coregistration of molecular imaging with anatomical X-ray imaging in animals
10. Imago provides atomic probe to Australian lab
11. Ni-NTA Superflow Columns - automated large-scale purification of 6xHis-tagged proteins
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:10/10/2017)... ... October 10, 2017 , ... ... FirstHand program has won a US2020 STEM Mentoring Award. Representatives of the FirstHand ... Excellence in Volunteer Experience from US2020. , US2020’s mission is to change the ...
(Date:10/10/2017)... CRUZ, Calif. , Oct. 10, 2017 ... grant from the NIH to develop RealSeq®-SC (Single Cell), ... kit for profiling small RNAs (including microRNAs) from single ... Analysis Program highlights the need to accelerate development of ... "New techniques for measuring ...
(Date:10/9/2017)...  BioTech Holdings announced today identification and patenting ... stem cell therapy prevents limb loss in animal ... that treatment with ProCell resulted in more than ... to standard bone marrow stem cell administration.  Interestingly, ... of therapeutic effect.  ...
(Date:10/9/2017)... ... October 09, 2017 , ... The Giving Tree ... products targeting the needs of consumers who are incorporating medical marijuana into their ... Phoenix, Arizona. , As operators of two successful Valley dispensaries, The Giving Tree’s ...
Breaking Biology Technology:
(Date:6/14/2017)... IBM ) is introducing several innovative partner startups at VivaTech ... startups and global businesses, taking place in Paris ... will showcase the solutions they have built with IBM Watson ... France is one of the most dynamic ... in the number of startups created between 2012 and 2015*, ...
(Date:5/16/2017)... , May 16, 2017   Bridge ... health organizations, and MD EMR Systems , ... development partner for GE, have established a partnership ... Portal product and the GE Centricity™ products, including ... EMR. These new integrations will ...
(Date:4/19/2017)... 2017 The global military biometrics ... marked by the presence of several large global players. ... five major players - 3M Cogent, NEC Corporation, M2SYS ... nearly 61% of the global military biometric market in ... global military biometrics market boast global presence, which has ...
Breaking Biology News(10 mins):