Navigation Links
Harvard's Wyss Institute team creates versatile 3d nanostructures using DNA 'bricks'
Date:12/4/2012

Researchers at the Wyss Institute for Biologically Inspired Engineering at Harvard University have created more than 100 three-dimensional (3D) nanostructures using DNA building blocks that function like Lego bricks a major advance from the two-dimensional (2D) structures the same team built a few months ago.

In effect, the advance means researchers just went from being able to build a flat wall of Legos, to building a house. The new method, featured as a cover research article in the 30 November issue of Science, is the next step toward using DNA nanotechnologies for more sophisticated applications than ever possible before, such as "smart" medical devices that target drugs selectively to disease sites, programmable imaging probes, templates for precisely arranging inorganic materials in the manufacturing of next generation computer circuits, and more.

The nanofabrication technique, called "DNA-brick self-assembly," uses short, synthetic strands of DNA that work like interlocking Lego bricks. It capitalizes on the ability to program DNA to form into predesigned shapes thanks to the underlying "recipe" of DNA base pairs: A (adenosine) only binds to T (thymine) and C (cytosine) only binds to G (guanine).

Earlier this year, the Wyss team reported in Nature how they could create a collection of 2D shapes by stacking one DNA brick (42 bases in length) upon another (http://wyss.harvard.edu/viewpressrelease/84/wyss-institute-develops-new-nanodevice-manufacturing-strategy-using-selfassembling-dna-building-blocks-).

But there's a "twist" in the new method required to build in 3D.

The trick is to start with an even smaller DNA brick (32 bases in length), which changes the orientation of every matched-up pair of bricks to a 90 degree anglegiving every two Legos a 3D shape. In this way, the team can use these bricks to build "out" in addition to "up," and eventually form 3D structures, such as a 25-nanometer solid cube containing hundreds of bricks. The cube becomes a "master" DNA "molecular canvas"; in this case, the canvas was comprised of 1000 so-called "voxels," which correspond to eight base-pairs and measure about 2.5 nanometers in size meaning this is architecture at its tiniest.

The master canvas is where the modularity comes in: by simply selecting subsets of specific DNA bricks from the large cubic structure, the team built 102 3D structures with sophisticated surface features, as well as intricate interior cavities and tunnels.

"This is a simple, versatile and robust method," says Peng Yin, Ph.D., Wyss core faculty member and senior author on the study.

Another method used to build 3D structures, called DNA origami, is tougher to use to build complex shapes, Yin said, because it relies on a long "scaffold" strand of DNA that folds to interact with hundreds of shorter "staple" strands and each new shape requires a new scaffold routing strategy and hence new staples. In contrast, the DNA brick method does not use any scaffold strand and therefore has a modular architecture; each brick can be added or removed independently.

"We are moving at lightning speed in our ability to devise ever more powerful ways to use biocompatible DNA molecules as structural building blocks for nanotechnology, which could have great value for medicine as well as non-medical applications," says Wyss Institute Founding Director Don Ingber, M.D., Ph.D.


'/>"/>
Contact: Kristen Kusek
kristen.kusek@wyss.harvard.edu
617-432-8266
Wyss Institute for Biologically Inspired Engineering at Harvard
Source:Eurekalert  

Related biology technology :

1. Harvards Wyss Institute creates living human gut-on-a-chip
2. Masaryk Memorial Cancer Institute Reduces Losses and Administrative Overhead With Ekahau RTLS
3. Van Andel Institute Partners with UNCF to Recruit Students to Biomedical Research Careers
4. The Pharmabiotic Research Institute (PRI) is Preparing to Publish its First Works on the Therapeutic and Medicinal Potential of Probiotics
5. Michael A. Marletta Takes Office as New President of Scripps Research Institute
6. HealthCare Institute of New Jersey Releases 2011 Biopharmaceutical and Medical Technology Economic Impact Data
7. QIAGEN and Max Planck Institute for Infection Biology Collaborate to Develop Assay for Active TB Risk in Individuals With Latent Infection
8. DFH Pharma to Collaborate With National Cancer Institute to Develop Second-Generation HIV Maturation Inhibitor Drugs
9. Niels Bohr Institute gets top researcher from Harvard
10. Van Andel Research Institute Study Provides New Details of Fundamental Cellular Process
11. Lupus Research Institute Awards $3.6 Million for Novel Studies Driving Wide-Ranging New Science in Lupus
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Harvard's Wyss Institute team creates versatile 3d nanostructures using DNA 'bricks'
(Date:2/11/2016)... International, a not-for-profit organization focused on the ethics and governance ... to patients around the world, today announced that the editors ... the Good Pharma Scorecard an ,Editors, Pick, ... of BMJ Open ,s ,Most Popular Articles, which includes ... read. Ed Sucksmith , assistant editor of ...
(Date:2/11/2016)... ... February 11, 2016 , ... ... focused on the development and manufacture of biopharmaceuticals and therapeutics, announces an ... the 2016 BioProcess International Awards – Recognizing Excellence in the People, Organizations ...
(Date:2/11/2016)... 2016   BioInformant announces the February 2016 ... Products, Opportunities, Tools, and Technologies – Market Size, Segments, ... The first and only ... industry, BioInformant has more than a decade of historical ... by stem cell type. This powerful 175 page global ...
(Date:2/11/2016)... (PRWEB) , ... February 11, 2016 , ... ... of its new stem cell treatment clinic in Quito, Ecuador. The new facility ... and trauma applications to patients from around the world. , The new ...
Breaking Biology Technology:
(Date:2/2/2016)... , Feb. 2, 2016 This ... the bioinformatic market by reviewing the recent advances ... tools that drive the field forward. Includes forecast ... Identify the challenges and opportunities that exist ... and software solution developers, as well as IT ...
(Date:2/2/2016)... MOUNTAIN VIEW, Calif. , Feb. 2, 2016 ... diabetic retinopathy market, Frost & Sullivan recognizes US-based ... North America Frost & Sullivan Award for New ... technology provider in North America ... standard in the rapidly growing diabetic retinopathy market. ...
(Date:1/28/2016)... -- Synaptics (NASDAQ: SYNA ), a leading developer of human ... December 31, 2015. --> --> ... 2 percent compared to the comparable quarter last year to $470.5 ... $35.0 million, or $0.93 per diluted share. ... quarter of fiscal 2016 grew 9 percent over the prior year ...
Breaking Biology News(10 mins):