Navigation Links
Harvard's Wyss Institute models a human disease in an organ-on-a-chip
Date:11/7/2012

Researchers at the Wyss Institute for Biologically Inspired Engineering at Harvard University have mimicked pulmonary edema in a microchip lined by living human cells, as reported today in the journal Science Translation Medicine. They used this "lung-on-a-chip" to study drug toxicity and identify potential new therapies to prevent this life-threatening condition.

The study offers further proof-of-concept that human "organs-on-chips" hold tremendous potential to replace traditional approaches to drug discovery and development.

"Major pharmaceutical companies spend a lot of time and a huge amount of money on cell cultures and animal testing to develop new drugs," says Donald Ingber, M.D., Ph.D., founding director of the Wyss Institute and senior author of the study, "but these methods often fail to predict the effects of these agents when they reach humans."

The lung-on-a-chip device, which the team first described only two years ago, is a crystal clear, flexible polymer about the size of a memory stick that contains hollow channels fabricated using computer microchip manufacturing techniques. Two of the channels are separated by a thin, flexible, porous membrane that on one side is lined with human lung cells from the air sac and exposed to air; human capillary blood cells are placed on the other side with medium flowing over their surface. A vacuum applied to side channels deforms this tissue-tissue interface to re-create the way human lung tissues physically expand and retract when breathing.

Wyss Technology Development Fellow Dongeun Huh, Ph.D., who also holds appointments at Boston Children's Hospital and Harvard Medical School, studied a cancer chemotherapy drug called interleukin-2or IL-2 for shortin the lung-on-a-chip. A major toxic side effect of IL-2 is pulmonary edema, which is a deadly condition in which the lungs fill with fluid and blood clots.

When IL-2 was injected into the blood channel of the lung-on-a-chip, fluid leaked across the membrane and two tissue layers, reducing the volume of air in the other channel and compromising oxygen transportjust as it does in lungs of human patients when it is administered at the equivalent doses and over the same time course. Blood plasma proteins also crossed into the air channel, leading to the formation of blood clots in the air space, as they do in humans treated with IL-2.

But one result came as a surprise.

It turns out the physical act of breathing greatly enhances the effects of IL-2 in pulmonary edema --"something that clinicians and scientists never suspected before," Ingber says. When the team turned on the vacuum attached to the chip to simulate breathing, it increased fluid leakage more than three-fold when treated with the clinically relevant IL-2 dose, and the Wyss team confirmed that the same response occurs in an animal model of pulmonary edema. This result could suggest that doctors treating patients on a respirator with IL-2 should reduce the tidal volume of air being pushed into the lungs, for example, in order to minimize the negative side effects of this drug.

Most exciting for the future of drug testing was the Wyss team's finding that "this on-chip model of human pulmonary edema can be used to identify new potential therapeutic agents in vitro," Ingber says. The pulmonary edema symptoms in the lung-on-a-chip disease model could be prevented by treating the tissues with a new class of drug, a transient receptor potential vanilloid 4 (TRPV4) channel blocker, under development by GlaxoSmithKline (GSK). In a separate study published by the GSK team in the same issue of Science Translation Medicine, the beneficial effects of TRPV4 inhibition in reducing pulmonary edema were independently validated using animal models of pulmonary edema caused by heart failure.

"In just a little more than two years, we've gone from unveiling the initial design of the lung-on-a-chip to demonstrating its potential to model a complex human disease, which we believe provides a glimpse of what drug discovery and development might look like in the future," Ingber says.

The cross-disciplinary, multi-institutional team that was led by Ingber and Huh also included Wyss Postdoctoral Fellow Daniel Leslie, Ph.D.; Benjamin Matthews, M.D., assistant professor of pediatrics in the Vascular Biology Program at Boston Children's Hospital and Harvard Medical School; Wyss Institute Researcher Jacob Fraser; Samuel Jurek, a researcher at Boston Children's Hospital and Harvard Medical School; Senior Wyss Staff Scientist Geraldine Hamilton, Ph.D.; and Senior Scientific Investigator Kevin Thorneloe, Ph.D., and Investigator M. Allen McAlexander from GlaxoSmithKline. Ingber is also the Judah Folkman Professor of Vascular Biology at Harvard Medical School and Boston Children's Hospital, and Professor of Bioengineering at Harvard School of Engineering and Applied Sciences.

"Organs-on-a-chip represents a new approach to model the structure, biology, and function of human organs, as evidenced by the complex breathing action of this engineered lung. This breathing action was key to providing new insight into the etiology of pulmonary edema," said Dr. James M. Anderson, M.D., Ph.D., director of the NIH Division of Program Coordination, Planning, and Strategic Initiatives that provided partial support for this research through the Common Fund's Regulatory Science program. "These results provide support for the broader use of such microsystems in studying disease pathology and hopefully for identifying new therapeutic targets."


'/>"/>

Contact: Kristen Kusek
kristen.kusek@wyss.harvard.edu
617-432-8266
Wyss Institute for Biologically Inspired Engineering at Harvard
Source:Eurekalert  

Related biology technology :

1. Harvards Wyss Institute creates living human gut-on-a-chip
2. Masaryk Memorial Cancer Institute Reduces Losses and Administrative Overhead With Ekahau RTLS
3. Van Andel Institute Partners with UNCF to Recruit Students to Biomedical Research Careers
4. The Pharmabiotic Research Institute (PRI) is Preparing to Publish its First Works on the Therapeutic and Medicinal Potential of Probiotics
5. Michael A. Marletta Takes Office as New President of Scripps Research Institute
6. HealthCare Institute of New Jersey Releases 2011 Biopharmaceutical and Medical Technology Economic Impact Data
7. QIAGEN and Max Planck Institute for Infection Biology Collaborate to Develop Assay for Active TB Risk in Individuals With Latent Infection
8. DFH Pharma to Collaborate With National Cancer Institute to Develop Second-Generation HIV Maturation Inhibitor Drugs
9. Niels Bohr Institute gets top researcher from Harvard
10. Van Andel Research Institute Study Provides New Details of Fundamental Cellular Process
11. Lupus Research Institute Awards $3.6 Million for Novel Studies Driving Wide-Ranging New Science in Lupus
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Harvard's Wyss Institute models a human disease in an organ-on-a-chip
(Date:6/23/2017)... USA, and CARDIFF, UK (PRWEB) , ... June 23, 2017 , ... ... (LANL), and Brian Lula, president of Physik Instrumente USA, have been selected as this ... and photonics . , The two have been invited along with other honorees to ...
(Date:6/23/2017)... ... June 23, 2017 , ... ... flying hobbyists, and the University Aviation Association (UAA), the unifying voice for collegiate ... Collegiate Challenge will encourage teamwork, competition, and success through a STEM-based education platform. ...
(Date:6/22/2017)... Colorado (PRWEB) , ... June 21, 2017 , ... ... RTP regional office in North Carolina, and engages Timothy Reinhardt to manage the ... of quality leadership at Pfizer Inc, with his most recent role as the ...
(Date:6/22/2017)... ... June 22, 2017 , ... AESKU.GROUP, an innovation ... Systeme & Technologien GmbH, thereby expanding its product portfolio to include allergy and ... urticaria, asthma, atopic eczema or a food allergy. Allergies are escalating to epidemic ...
Breaking Biology Technology:
(Date:4/19/2017)... York , April 19, 2017 ... as its vendor landscape is marked by the presence ... market is however held by five major players - ... Together these companies accounted for nearly 61% of the ... the leading companies in the global military biometrics market ...
(Date:4/11/2017)... 11, 2017 Crossmatch®, a globally-recognized leader ... today announced that it has been awarded a ... Activity (IARPA) to develop next-generation Presentation Attack Detection ... "Innovation has been a driving force within Crossmatch ... allow us to innovate and develop new technologies ...
(Date:4/5/2017)... , April 5, 2017  The Allen Institute ... Allen Cell Explorer: a one-of-a-kind portal and dynamic digital ... 3D imaging data, the first application of deep learning ... human stem cell lines and a growing suite of ... platform for these and future publicly available resources created ...
Breaking Biology News(10 mins):