Navigation Links
Graphene's 'quantum leap' takes electronics a step closer
Date:7/24/2011

Writing in the journal Nature Physics, the academics, who discovered the world's thinnest material at The University of Manchester in 2004, have revealed more about its electronic properties.

Research institutes and universities around the world are already looking at ways to build devices such as touch-screens, ultrafast transistors and photodetectors.

Now the research from the creators of the material promises to accelerate that research, and potentially open up countless more electronic opportunities.

The researchers, from the universities of Manchester, Madrid and Moscow, have studied in detail the effect of interactions between electrons on the electronic properties of graphene.

They use extremely high-quality graphene devices which are prepared by suspending sheets of graphene in a vacuum.

This way most of the unwanted scattering mechanisms for electrons in graphene could be eliminated, thus enhancing the effect of electron-on-electron interaction.

This is the first effect of its kind where the interactions between electrons in graphene could be clearly seen.

The reason for such unique electronic properties is that electrons in this material are very different from those in any other metals. They mimic massless relativistic particles such as photons.

Due to such properties graphene is sometimes called 'CERN on a desk' referencing the Large Hadron Collider in Switzerland. This is just one of the reasons why the electronic properties are particularly exciting and often bring surprises.

Professor Geim and Professor Novoselov's pioneering work won them the Nobel Prize for Physics in 2010 for "groundbreaking experiments regarding the two-dimensional material graphene".

The pair, who have worked together for more than a decade since Professor Novoselov was Professor Geim's PHD student, used to devote every Friday evening to 'out of the box' experiments not directly linked to their main research topics.

One Friday, they used Scotch tape to peel away layers of carbon from a piece of graphite, and were left with a single atom thick, two dimensional film of carbon graphene.

Graphene is a novel two-dimensional material which can be seen as a monolayer of carbon atoms arranged in a hexagonal lattice.

It possesses a number of unique properties, such as extremely high electron and thermal conductivities due to very high velocities of electrons and high quality of the crystals, as well as mechanical strength.

Professor Novoselov said: "Although the exciting physics which we have found in this particular experiment may have an immediate implementation in practical electronic devices, the further understanding of the electronic properties of this material will bring us a step closer to the development of graphene electronics."

Professor Geim added: "The progress have been possible due to quantum leap in improvement of the sample quality which could be produced at The University of Manchester."


'/>"/>

Contact: Daniel Cochlin
daniel.cochlin@manchester.ac.uk
0044-161-275-8387
University of Manchester
Source:Eurekalert

Related biology technology :

1. Discovery may overcome obstacle for quantum computing
2. Cadmium selenide quantum dots degrade in soil, releasing their toxic guts, study finds
3. U.Va.s Pfister accomplishes breakthrough toward quantum computing
4. NIST mechanical micro-drum cooled to quantum ground state
5. UCL grows first telecommunications wavelength quantum dot laser on a silicon substrate
6. Innovative device for quantum simulations
7. U of T scientist leads international team in quantum physics first
8. U of Toronto to award quantum mechanics prize to renowned physicist Sandu Popescu
9. Pairing quantum dots with fullerenes for nanoscale photovoltaics
10. Diamonds shine in quantum networks
11. Reportlinker Adds Quantum Dots: Technologies and Global Markets
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/20/2017)... ... April 20, 2017 , ... Open Therapeutics and ... (IP) sharing and commercialization model. , The Center for Advancing Innovation helps institutions ... this effort is bringing the IP to the attention of the entrepreneurial community ...
(Date:4/19/2017)... (PRWEB) , ... April 18, 2017 , ... ... 1970s and has been a key device for generating monodisperse droplets of known ... droplet processes and for generating monodisperse solid particles by drying monodisperse droplets. ...
(Date:4/19/2017)... ... April 19, 2017 , ... Nobilis Therapeutics ... Company Seeks to Leverage Clinical Data in its Upcoming Post Traumatic Stress Disorder Trial ... an 81 patient clinical trial assessing efficacy of its NBTX-001, a xenon-based therapeutic in ...
(Date:4/19/2017)... 19, 2017 A new report published by Allied Market ... ," the global market was valued at $6,769 million in 2015, and is ... 2016 to 2022. ... Allied Market Research Logo ...      (Logo: http://photos.prnewswire.com/prnh/20140911/647229) The cross-flow segment ...
Breaking Biology Technology:
(Date:4/19/2017)... April 19, 2017 The global ... landscape is marked by the presence of several large ... held by five major players - 3M Cogent, NEC ... accounted for nearly 61% of the global military biometric ... in the global military biometrics market boast global presence, ...
(Date:4/11/2017)... BEACH GARDENS, Fla. , April 11, 2017 ... identity management and secure authentication solutions, today announced ... contract by Intelligence Advanced Research Projects Activity (IARPA) ... for IARPA,s Thor program. "Innovation has ... onset and IARPA,s Thor program will allow us ...
(Date:4/5/2017)... 5, 2017  The Allen Institute for Cell Science ... a one-of-a-kind portal and dynamic digital window into the ... the first application of deep learning to create predictive ... lines and a growing suite of powerful tools. The ... and future publicly available resources created and shared by ...
Breaking Biology News(10 mins):