Navigation Links
Graphene yields secrets to its extraordinary properties
Date:5/14/2009

Applying innovative measurement techniques, researchers from the Georgia Institute of Technology and the National Institute of Standards and Technology (NIST) have directly measured the unusual energy spectrum of graphene, a technologically promising, two-dimensional form of carbon that has tantalized and puzzled scientists since its discovery in 2004.

Published in this week's issue of Science,* their work adds new detail to help explain the unusual physical phenomena and properties associated with graphene, a single layer of carbon atoms arrayed in a repeating, honeycomb-like arrangement.

Graphene's exotic behaviors present intriguing prospects for future technologies, including high-speed, graphene-based electronics that might replace today's silicon-based integrated circuits and other devices. Even at room temperature, electrons in graphene are more than 100 times more mobile than in silicon.

Graphene apparently owes this enhanced mobility to the curious fact that its electrons and other carriers of electric charges behave as though they do not have mass. In conventional materials, the speed of electrons is related to their energy, but not in graphene. Although they do not approach the speed of light, the unbound electrons in graphene behave much like photons, massless particles of light that also move at a speed independent of their energy.

This weird massless behavior is associated with other strangeness. When ordinary conductors are put in a strong magnetic field, charge carriers such as electrons begin moving in circular orbits that are constrained to discrete, equally spaced energy levels. In graphene these levels are known to be unevenly spaced because of the "massless" electrons.

The Georgia Tech/NIST team tracked these massless electrons in action, using a specialized NIST instrument to zoom in on the graphene layer at a billion times magnification, tracking the electronic states while at the same time applying high magnetic fields. The custom-built, ultra-low-temperature and ultra-high-vacuum scanning tunneling microscope allowed them to sweep an adjustable magnetic field across graphene samples prepared at Georgia Tech, observing and mapping the peculiar non-uniform spacing among discrete energy levels that form when the material is exposed to magnetic fields.

The team developed a high-resolution map of the distribution of energy levels in graphene. In contrast to metals and other conducting materials, where the distance from one energy peak to the next is uniformly equal, this spacing is uneven in graphene.

The researchers also probed and spatially mapped graphene's hallmark "zero energy state," a curious phenomenon where the material has no electrical carriers until a magnetic field is applied.

The measurements also indicated that layers of graphene grown and then heated on a substrate of silicon-carbide behave as individual, isolated, two-dimensional sheets. On the basis of the results, the researchers suggest that graphene layers are uncoupled from adjacent layers because they stack in different rotational orientations. This finding may point the way to manufacturing methods for making large, uniform batches of graphene for a new carbon-based electronics.


'/>"/>

Contact: Mark Bello
mark.bello@nist.gov
301-975-3776
National Institute of Standards and Technology (NIST)
Source:Eurekalert

Related biology technology :

1. UM physicists show electrons can travel over 100 times faster in graphene than in silicon
2. Graphene gazing gives glimpse of foundations of universe
3. Graphene used to create worlds smallest transistor
4. Graphene-based gadgets may be just years away
5. By adding graphene, researchers create superior polymer
6. Penn scientists demonstrate potential of graphene films as next-generation transistors
7. Graphene pioneers follow in Nobel footsteps
8. New graphene-based material clarifies graphite oxide chemistry
9. Researchers discover method for mass production of nanomaterial graphene
10. Light-speed nanotech: Controlling the nature of graphene
11. Scientists prove graphenes edge structure affects electronic properties
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:2/24/2017)... KONG, Feb. 24, 2017 China Cord Blood Corporation ... China,s leading provider of cord blood collection, laboratory testing, ... today announced its unaudited financial results for the third ... ended December 31, 2016. Third Quarter of ... third quarter of fiscal 2017 increased by 18.6% to ...
(Date:2/24/2017)... VWR), the leading global independent provider of product and service ... results for the fourth quarter and full year ended December ... record quarterly net sales of $1.13 billion, up 1.6% year-over-year, ... 4Q16 EMEA-APAC segment net sales increased 0.4%, up ... increased 2.5%, or down 0.9% on an organic basis, driven ...
(Date:2/23/2017)... Financial Highlights (in ... Months Ended December 31,Twelve Months Ended December 31,20162015% ... $           300$     ... Revenue 3539(10)%9498(4)%Kuvan Net Product Revenue ... 756025%297303(2)%Vimizim Net Product Revenue ...
(Date:2/23/2017)... 2017  MIODx announced today that it has ... technologies from the University of California, San Francisco ... monitor a patient for response to immune checkpoint ... second license extends the technology with a method ... have an immune-related adverse event (IRAE) from their ...
Breaking Biology Technology:
(Date:2/8/2017)... AWRE ), a leading supplier of biometrics software ... year ended December 31, 2016. Revenue for ... $6.9 million in the same quarter last year. Operating income ... to $2.6 million in the fourth quarter of 2015. Net ... or $0.02 per diluted share, which compares to $1.8 million, ...
(Date:2/8/2017)... The biometrics market has reached a ... organizations, desires to better authenticate or identify users ... challenge questions), biometrics is quickly working its way ... is driven by use cases, though there traditionally ... uses cases, with consumer-facing use cases encompassing authentication, ...
(Date:2/7/2017)... 2017   MedNet Solutions , an innovative SaaS-based ... clinical research, is pleased to announce that the latest ... highly flexible and award winning eClinical solution, is now ... is a proven Software-as-a-Service (SaaS) clinical research technology ... but also delivers an entire suite of eClinical tools ...
Breaking Biology News(10 mins):