Navigation Links
Graphene used to create world's smallest transistor
Date:4/17/2008

Researchers have used the world's thinnest material to create the world's smallest transistor, one atom thick and ten atoms wide.

Reporting their peer-reviewed findings in the latest issue of the journal Science, Dr Kostya Novoselov and Professor Andre Geim from The School of Physics and Astronomy at The University of Manchester show that graphene can be carved into tiny electronic circuits with individual transistors having a size not much larger than that of a molecule.

The smaller the size of their transistors the better they perform, say the Manchester researchers.

In recent decades, manufacturers have crammed more and more components onto integrated circuits. As a result, the number of transistors and the power of these circuits have roughly doubled every two years. This has become known as Moore's Law.

But the speed of cramming is now noticeably decreasing, and further miniaturisation of electronics is to experience its most fundamental challenge in the next 10 to 20 years, according to the semiconductor industry roadmap.

At the heart of the problem is the poor stability of materials if shaped in elements smaller than 10 nanometres (1) in size. At this spatial scale, all semiconductors -- including silicon -- oxidise, decompose and uncontrollably migrate along surfaces like water droplets on a hot plate.

Four years ago, Geim and his colleagues discovered graphene, the first known one-atom-thick material which can be viewed as a plane of atoms pulled out from graphite. Graphene has rapidly become the hottest topic in physics and materials science.

Now the Manchester team has shown that it is possible to carve out nanometre-scale transistors from a single graphene crystal. Unlike all other known materials, graphene remains highly stable and conductive even when it is cut into devices one nanometre wide.

Graphene transistors start showing advantages and good performance at sizes below 10 nanometres - the miniaturization limit at which the Silicon technology is predicted to fail.

"Previously, researchers tried to use large molecules as individual transistors to create a new kind of electronic circuits. It is like a bit of chemistry added to computer engineering", says Novoselov. "Now one can think of designer molecules acting as transistors connected into designer computer architecture on the basis of the same material (graphene), and use the same fabrication approach that is currently used by semiconductor industry".

"It is too early to promise graphene supercomputers," adds Geim. "In our work, we relied on chance when making such small transistors. Unfortunately, no existing technology allows the cutting materials with true nanometre precision. But this is exactly the same challenge that all post-silicon electronics has to face. At least we now have a material that can meet such a challenge."

"Graphene is an exciting new material with unusual properties that are promising for nanoelectronics", comments Bob Westervelt, professor at Harvard University. "The future should be very interesting".


'/>"/>

Contact: Alex Waddington
alex.waddington@manchester.ac.uk
University of Manchester
Source:Eurekalert

Related biology technology :

1. Graphene gazing gives glimpse of foundations of universe
2. UM physicists show electrons can travel over 100 times faster in graphene than in silicon
3. Researchers create the first thermal nanomotor in the world
4. CryoPort Creates Personal Wall on Wallst.nets Financial Social Community, my.wallst.net
5. ADVENTRX Creates Executive Vice President Position and Announces New Chief Financial Officer
6. Misys and Allscripts Create a Leader in Healthcare Software
7. MIT creates gecko-inspired bandage
8. Researchers create gold aluminum, black platinum, blue silver
9. Venter Institute Scientists Create First Synthetic Bacterial Genome
10. Stemagen First to Create Cloned Human Embryos From Adult Cells
11. Nikon Instruments Partners With Koshland Science Museum to Create the Museums First-Ever Microbe Lab
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:7/18/2017)... ... July 18, 2017 , ... Recently recognized by CIO ... announces the migration of its flagship cloud-based product Planet Life Cycle – a ... work management system that merges strategic and financial planning with execution. The solution ...
(Date:7/17/2017)... (PRWEB) , ... July 17, ... ... of technology-enabled clinical trial solutions, today announced safety software company AB Cube ... the eHealth Solutions business segment to advance technology innovation across life sciences ...
(Date:7/17/2017)... ... 17, 2017 , ... Panitch Schwarze Belisario & Nadel ... BiG (Biomedical Innovation Group) annual meeting in China. , This year’s meeting, held ... T-cell) therapy, a rapidly developing highly personalized anti-cancer technology that involves removing some ...
(Date:7/16/2017)... PARSIPPANY, N.J. (PRWEB) , ... July 16, 2017 ... ... products, laboratory equipment and analytical instruments announced the launch of its new line ... has introduced five rocking and waving shaker models (both analog and digital) for ...
Breaking Biology Technology:
(Date:6/14/2017)... IBM ) is introducing several innovative partner startups at ... between startups and global businesses, taking place in ... startups will showcase the solutions they have built with IBM ... France is one of the most ... increase in the number of startups created between 2012 and ...
(Date:4/24/2017)... -- Janice Kephart , former 9/11 Commission ... LLP (IdSP) , today issues the following statement: ... 6, 2017 Executive Order: Protecting the Nation ... instilled with greater confidence, enabling the reactivation of ... are suspended by until at least July 2017). ...
(Date:4/13/2017)... -- According to a new market research report "Consumer IAM ... and Authorization), Service, Authentication Type, Deployment Mode, Vertical, and Region - Global ... grow from USD 14.30 Billion in 2017 to USD 31.75 Billion by ... ... MarketsandMarkets Logo ...
Breaking Biology News(10 mins):