Navigation Links
Graphene exhibits bizarre new behavior well suited to electronic devices
Date:7/29/2010

Graphene, a sheet of pure carbon heralded as a possible replacement for silicon-based semiconductors, has been found to have a unique and amazing property that could make it even more suitable for future electronic devices.

Physicists at the University of California, Berkeley, and the Lawrence Berkeley National Laboratory (LBNL) have found that when graphene is stretched in a specific way it sprouts nanobubbles in which electrons behave in a bizarre way, as if they are moving in a strong magnetic field.

Specifically, the electrons within each nanobubble segregate into quantized energy levels instead of occupying energy bands, as in unstrained graphene. The energy levels are identical to those that an electron would occupy if it were moving in circles in a very strong magnetic field, as high as 300 tesla, which is bigger than any laboratory can produce except in brief explosions, said Michael Crommie, professor of physics at UC Berkeley and a faculty researcher at LBNL. Magnetic resonance imagers use magnets less than 10 tesla, while the Earth's magnetic field at ground level is 31 microtesla.

"This gives us a new handle on how to control how electrons move in graphene, and thus to control graphene's electronic properties, through strain," Crommie said. "By controlling where the electrons bunch up and at what energy, you could cause them to move more easily or less easily through graphene, in effect, controlling their conductivity, optical or microwave properties. Control of electron movement is the most essential part of any electronic device."

Crommie and colleagues report the discovery in the July 30 issue of the journal Science.

Aside from the engineering implications of the discovery, Crommie is eager to use this unusual property of graphene to explore how electrons behave in fields that until now have been unobtainable in the laboratory.

"When you crank up a magnetic field you start seeing very interesting behavior because the electrons spin in tiny circles," he said. "This effect gives us a new way to induce this behavior, even in the absence of an actual magnetic field."

Among the unusual behaviors observed of electrons in strong magnetic fields are the quantum Hall effect and the fractional quantum Hall effect, where at low temperatures electrons also fall into quantized energy levels.

The new effect was discovered by accident when a UC Berkeley postdoctoral researcher and several students in Crommie's lab grew graphene on the surface of a platinum crystal. Graphene is a one atom-thick sheet of carbon atoms arranged in a hexagonal pattern, like chicken wire. When grown on platinum, the carbon atoms do not perfectly line up with the metal surface's triangular crystal structure, which creates a strain pattern in the graphene as if it were being pulled from three different directions.

The strain produces small, raised triangular graphene bubbles 4 to 10 nanometers across in which the electrons occupy discrete energy levels rather than the broad, continuous range of energies allowed by the band structure of unstrained graphene. This new electronic behavior was detected spectroscopically by scanning tunneling microscopy. These so-called Landau levels are reminiscent of the quantized energy levels of electrons in the simple Bohr model of the atom, Crommie said.

The appearance of a pseudomagnetic field in response to strain in graphene was first predicted for carbon nanotubes in 1997 by Charles Kane and Eugene Mele of the University of Pennsylvania. Nanotubes are a rolled up form of graphene.

Within the last year, however, Francisco Guinea of the Instituto de Ciencia de Materiales de Madrid in Spain, Mikhael Katsnelson of Radboud University of Nijmegen, the Netherlands, and A. K. Geim of the University of Manchester, England predicted what they termed a pseudo quantum Hall effect in strained graphene . This is the very quantization that Crommie's research group has experimentally observed. Boston University physicist Antonio Castro Neto, who was visiting Crommie's laboratory at the time of the discovery, immediately recognized the implications of the data, and subsequent experiments confirmed that it reflected the pseudo quantum Hall effect predicted earlier.

"Theorists often latch onto an idea and explore it theoretically even before the experiments are done, and sometimes they come up with predictions that seem a little crazy at first. What is so exciting now is that we have data that shows these ideas are not so crazy," Crommie said. "The observation of these giant pseudomagnetic fields opens the door to room-temperature 'straintronics,' the idea of using mechanical deformations in graphene to engineer its behavior for different electronic device applications."

Crommie noted that the "pseudomagnetic fields" inside the nanobubbles are so high that the energy levels are separated by hundreds of millivolts, much higher than room temperature. Thus, thermal noise would not interfere with this effect in graphene even at room temperature. The nanobubble experiments performed in Crommie's laboratory, however, were performed at very low temperature.

Normally, electrons moving in a magnetic field circle around the field lines. Within the strained nanobubbles, the electrons move in circles in the plane of the graphene sheet, as if a strong magnetic field has been applied perpendicular to the sheet even when there is no actual magnetic field. Apparently, Crommie said, the pseudomagnetic field only affects moving electrons and not other properties of the electron, such as spin, that are affected by real magnetic fields.


'/>"/>

Contact: Robert Sanders
rsanders@berkeley.edu
510-643-6998
University of California - Berkeley
Source:Eurekalert  

Related biology technology :

1. Graphene pioneers follow in Nobel footsteps
2. New graphene-based material clarifies graphite oxide chemistry
3. Researchers discover method for mass production of nanomaterial graphene
4. Light-speed nanotech: Controlling the nature of graphene
5. Scientists prove graphenes edge structure affects electronic properties
6. Graphene yields secrets to its extraordinary properties
7. Graphene may have advantages over copper for IC interconnects at the nanoscale
8. Bilayer graphene gets a bandgap
9. Material world: Graphenes versatility promises new applications
10. UCR scientists manipulate ripples in graphene, enabling strain-based graphene electronics
11. Researchers design new graphene-based, nano-material with magnetic properties
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Graphene exhibits bizarre new behavior well suited to electronic devices
(Date:6/23/2016)... ... 23, 2016 , ... ClinCapture, the only free validated electronic ... showcase its product’s latest features from June 26 to June 30, 2016 for ... Disrupting Clinical Trials in The Cloud during the conference. DIA (Drug Information ...
(Date:6/23/2016)... ... June 23, 2016 , ... Velocity Products, a division ... tuned and optimized exclusively for Okuma CNC machining centers at The International Manufacturing ... collaboration among several companies with expertise in toolholding, cutting tools, machining dynamics and ...
(Date:6/23/2016)... , June 23, 2016 ... research report to its pharmaceuticals section with historic ... details and much more. Complete report ... 151 pages, profiling 15 companies and supported with ... http://www.reportsnreports.com/reports/601420-global-cell-culture-media-industry-2016-market-research-report.html . The Global ...
(Date:6/22/2016)... , June 22, 2016 Research and ... Global Markets" report to their offering. ... billion in 2014 from $29.3 billion in 2013. The market is ... of 13.8% from 2015 to 2020, increasing from $50.6 billion in ... projected product forecasts during the forecast period (2015 to 2020) are ...
Breaking Biology Technology:
(Date:4/28/2016)... , April 28, 2016 First quarter 2016: ... up 966% compared with the first quarter of 2015 ... SEK 589.1 M (loss: 18.8) and the operating margin was 40% ... 0.32) Cash flow from operations was SEK 249.9 M ... revenue guidance is unchanged, SEK 7,000-8,500 M. The operating ...
(Date:4/26/2016)... , April 27, 2016 ... the  "Global Multi-modal Biometrics Market 2016-2020"  report to ... ) , The analysts forecast the ... CAGR of 15.49% during the period 2016-2020.  ... number of sectors such as the healthcare, BFSI, ...
(Date:4/15/2016)... , April 15, 2016  A new ... make more accurate underwriting decisions in a fraction ... timely, competitively priced and high-value life insurance policies ... screenings. With Force Diagnostics, rapid testing ... lifestyle data readings (blood pressure, weight, pulse, BMI, ...
Breaking Biology News(10 mins):