Navigation Links
Graphene electronics moves into a third dimension
Date:2/2/2012

In a paper published this week in Science, a Manchester team lead by Nobel laureates Professor Andre Geim and Professor Konstantin Novoselov has literally opened a third dimension in graphene research. Their research shows a transistor that may prove the missing link for graphene to become the next silicon.

Graphene one atomic plane of carbon is a remarkable material with endless unique properties, from electronic to chemical and from optical to mechanical.

One of many potential applications of graphene is its use as the basic material for computer chips instead of silicon. This potential has alerted the attention of major chip manufactures, including IBM, Samsung, Texas Instruments and Intel. Individual transistors with very high frequencies (up to 300 GHz) have already been demonstrated by several groups worldwide.

Unfortunately, those transistors cannot be packed densely in a computer chip because they leak too much current, even in the most insulating state of graphene. This electric current would cause chips to melt within a fraction of a second.

This problem has been around since 2004 when the Manchester researchers reported their Nobel-winning graphene findings and, despite a huge worldwide effort to solve it since then, no real solution has so far been offered.

The University of Manchester scientists now suggest using graphene not laterally (in plane) as all the previous studies did but in the vertical direction. They used graphene as an electrode from which electrons tunnelled through a dielectric into another metal. This is called a tunnelling diode.

Then they exploited a truly unique feature of graphene that an external voltage can strongly change the energy of tunnelling electrons. As a result they got a new type of a device vertical field-effect tunnelling transistor in which graphene is a critical ingredient.

Dr Leonid Ponomarenko, who spearheaded the experimental effort, said: "We have proved a conceptually new approach to graphene electronics. Our transistors already work pretty well. I believe they can be improved much further, scaled down to nanometre sizes and work at sub-THz frequencies."

"It is a new vista for graphene research and chances for graphene-based electronics never looked better than they are now", adds Professor Novoselov.

Graphene alone would not be enough to make the breakthrough. Fortunately, there are many other materials, which are only one atom or one molecule thick, and they were used for help.

The Manchester team made the transistors by combining graphene together with atomic planes of boron nitride and molybdenum disulfide. The transistors were assembled layer by layer in a desired sequence, like a layer cake but on an atomic scale.

Such layer-cake superstructures do not exist in nature. It is an entirely new concept introduced in the report by the Manchester researchers. The atomic-scale assembly offers many new degrees of functionality, without some of which the tunnelling transistor would be impossible.

"The demonstrated transistor is important but the concept of atomic layer assembly is probably even more important," explains Professor Geim. Professor Novoselov added: "Tunnelling transistor is just one example of the inexhaustible collection of layered structures and novel devices which can now be created by such assembly.

"It really offers endless opportunities both for fundamental physics and for applications. Other possible examples include light emission diodes, photovoltaic devices, and so on."


'/>"/>
Contact: Daniel Cochlin
daniel.cochlin@manchester.ac.uk
0044-161-275-8387
University of Manchester
Source:Eurekalert

Related biology technology :

1. Graphene pioneers follow in Nobel footsteps
2. New graphene-based material clarifies graphite oxide chemistry
3. Researchers discover method for mass production of nanomaterial graphene
4. Light-speed nanotech: Controlling the nature of graphene
5. Scientists prove graphenes edge structure affects electronic properties
6. Graphene yields secrets to its extraordinary properties
7. Graphene may have advantages over copper for IC interconnects at the nanoscale
8. Bilayer graphene gets a bandgap
9. Material world: Graphenes versatility promises new applications
10. UCR scientists manipulate ripples in graphene, enabling strain-based graphene electronics
11. Researchers design new graphene-based, nano-material with magnetic properties
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:2/10/2016)... ... ... LATHAM, NEW YORK... Marktech Optoelectronics will feature their new high-speed ... Francisco’s Moscone Center from February 16-18, 2016, and at the healthcare-focused BiOS Expo on ... diode standard packages feature a TO-46 metal can with active areas of 1.0mm and ...
(Date:2/10/2016)... ... 10, 2016 , ... PatientCrossroads announces that the ... online PatientCrossroads platform, has exceeded both its one-year and overall recruitment goals since ... which seeks to advance understanding of the hereditary risks for certain kinds of ...
(Date:2/10/2016)... ... 10, 2016 , ... Global Stem Cells Group, ... Global Stem Cells Network (GSCN) and its affiliate Global Medical Training Network ... adipose and bone marrow therapies. , Through the new collaboration, Global Stem ...
(Date:2/10/2016)... , ... February 09, 2016 , ... ... and current winner of the Highest Overall Customer Rating Award from Circuits ... of its business units across the USA, Canada, Mexico and China. , The ...
Breaking Biology Technology:
(Date:1/27/2016)... Ohio , Jan. 27, 2016  Rite Track, ... based in West Chester, Ohio ... award winning service staff, based in Austin, ... capacity and ability to provide modifications, installations and technical ... Dovalina , CEO of PLUS, commented, "PLUS has provided ...
(Date:1/22/2016)... , Jan. 22, 2016 ... the addition of the "Global Biometrics ... to their offering. --> ... the "Global Biometrics Market in Retail ... --> Research and Markets ...
(Date:1/20/2016)... SAN JOSE, Calif. , Jan. 20, 2016 ... leading developer of human interface solutions, today announced ... touch controller solution for wearables and small screen ... appliances such as printers. Supporting round and rectangular ... the S1423 offers excellent performance with moisture on ...
Breaking Biology News(10 mins):