Navigation Links
Graphene electronics moves into a third dimension

In a paper published this week in Science, a Manchester team lead by Nobel laureates Professor Andre Geim and Professor Konstantin Novoselov has literally opened a third dimension in graphene research. Their research shows a transistor that may prove the missing link for graphene to become the next silicon.

Graphene one atomic plane of carbon is a remarkable material with endless unique properties, from electronic to chemical and from optical to mechanical.

One of many potential applications of graphene is its use as the basic material for computer chips instead of silicon. This potential has alerted the attention of major chip manufactures, including IBM, Samsung, Texas Instruments and Intel. Individual transistors with very high frequencies (up to 300 GHz) have already been demonstrated by several groups worldwide.

Unfortunately, those transistors cannot be packed densely in a computer chip because they leak too much current, even in the most insulating state of graphene. This electric current would cause chips to melt within a fraction of a second.

This problem has been around since 2004 when the Manchester researchers reported their Nobel-winning graphene findings and, despite a huge worldwide effort to solve it since then, no real solution has so far been offered.

The University of Manchester scientists now suggest using graphene not laterally (in plane) as all the previous studies did but in the vertical direction. They used graphene as an electrode from which electrons tunnelled through a dielectric into another metal. This is called a tunnelling diode.

Then they exploited a truly unique feature of graphene that an external voltage can strongly change the energy of tunnelling electrons. As a result they got a new type of a device vertical field-effect tunnelling transistor in which graphene is a critical ingredient.

Dr Leonid Ponomarenko, who spearheaded the experimental effort, said: "We have proved a conceptually new approach to graphene electronics. Our transistors already work pretty well. I believe they can be improved much further, scaled down to nanometre sizes and work at sub-THz frequencies."

"It is a new vista for graphene research and chances for graphene-based electronics never looked better than they are now", adds Professor Novoselov.

Graphene alone would not be enough to make the breakthrough. Fortunately, there are many other materials, which are only one atom or one molecule thick, and they were used for help.

The Manchester team made the transistors by combining graphene together with atomic planes of boron nitride and molybdenum disulfide. The transistors were assembled layer by layer in a desired sequence, like a layer cake but on an atomic scale.

Such layer-cake superstructures do not exist in nature. It is an entirely new concept introduced in the report by the Manchester researchers. The atomic-scale assembly offers many new degrees of functionality, without some of which the tunnelling transistor would be impossible.

"The demonstrated transistor is important but the concept of atomic layer assembly is probably even more important," explains Professor Geim. Professor Novoselov added: "Tunnelling transistor is just one example of the inexhaustible collection of layered structures and novel devices which can now be created by such assembly.

"It really offers endless opportunities both for fundamental physics and for applications. Other possible examples include light emission diodes, photovoltaic devices, and so on."

Contact: Daniel Cochlin
University of Manchester

Related biology technology :

1. Graphene pioneers follow in Nobel footsteps
2. New graphene-based material clarifies graphite oxide chemistry
3. Researchers discover method for mass production of nanomaterial graphene
4. Light-speed nanotech: Controlling the nature of graphene
5. Scientists prove graphenes edge structure affects electronic properties
6. Graphene yields secrets to its extraordinary properties
7. Graphene may have advantages over copper for IC interconnects at the nanoscale
8. Bilayer graphene gets a bandgap
9. Material world: Graphenes versatility promises new applications
10. UCR scientists manipulate ripples in graphene, enabling strain-based graphene electronics
11. Researchers design new graphene-based, nano-material with magnetic properties
Post Your Comments:
(Date:12/1/2015)... Harry Lander , President of Regen, expands his role to ... recruits five distinguished scientists to join advisory team ... expands his role to include serving as ... to join advisory team --> Dr. Harry Lander ... serving as Chief Science Officer and recruits ...
(Date:12/1/2015)... ... 01, 2015 , ... Matthew “Tex” VerMilyea, PhD, HCLD, has joined Texas Fertility ... all IVF lab procedures as well as continue his research efforts into the emerging ... to Auckland, New Zealand to bring home a High Complexity Clinical Laboratory Director named ...
(Date:11/30/2015)... ... 30, 2015 , ... Global Stem Cells Group ... from Central America and abroad for the first Iberoamerican Convention on Aesthetic Medicine, ... 2016. Testart will present and discuss new trends in anti-aging stem cell treatments, ...
(Date:11/30/2015)... ... November 30, 2015 , ... ... Good Manufacturing Practice (GMP) 10000 in the Santiago Marriott. The Global Stem Cells ... operated by a world-class team of qualified medical researchers and practitioners, experienced in ...
Breaking Biology Technology:
(Date:11/17/2015)... Mass. , Nov. 17, 2015 Pressure ... leader in the development and sale of broadly enabling, ... worldwide life sciences industry, today announced it has received ... its $5 million Private Placement (the "Offering"), increasing the ... $4,025,000.  One or more additional closings are expected in ...
(Date:11/12/2015)... 2015  A golden retriever that stayed healthy despite ... has provided a new lead for treating this muscle-wasting ... Institute of MIT and Harvard and the University of ... Cell, pinpoints a protective gene that ... effects. The Boston Children,s lab of Lou Kunkel ...
(Date:11/12/2015)...   Growing need for low-cost, easy to ... paving the way for use of biochemical sensors ... in clinical, agricultural, environmental, food and defense applications. ... medical applications, however, their adoption is increasing in ... emphasis on improving product quality and growing need ...
Breaking Biology News(10 mins):