Navigation Links
Gold nanoparticles could treat prostate cancer with fewer side effects than chemotherapy
Date:7/16/2012

COLUMBIA, Mo. Currently, large doses of chemotherapy are required when treating certain forms of cancer, resulting in toxic side effects. The chemicals enter the body and work to destroy or shrink the tumor, but also harm vital organs and drastically affect bodily functions. Now, University of Missouri scientists have found a more efficient way of targeting prostate tumors by using gold nanoparticles and a compound found in tea leaves. This new treatment would require doses that are thousands of times smaller than chemotherapy and do not travel through the body inflicting damage to healthy areas. The study is being published in the Proceedings of the National Academy of Sciences.

"In our study, we found that a special compound in tea was attracted to tumor cells in the prostate," said Kattesh Katti, curators' professor of radiology and physics in the School of Medicine and the College of Arts and Science and senior research scientist at the MU Research Reactor. "When we combined the tea compound with radioactive gold nanoparticles, the tea compound helped 'deliver' the nanoparticles to the site of the tumors and the nanoparticles destroyed the tumor cells very efficiently."

Currently, doctors treat prostate cancer by injecting hundreds of radioactive 'seeds' into the prostate. However, that treatment is not effective when treating an aggressive form of prostate cancer, said Cathy Cutler, research professor at the MU Research Reactor and co-author of the study. The size of the seeds and their inability to deliver effective doses hampers their ability to stop the aggressive form of prostate cancer.

In the study, the MU scientists created nanoparticles that are just the right size. Instead of hundreds of injections, the team only used one or two injections, and the nanoparticles were more likely to stay very close to the tumor sites.

Cutler and Katti have been working with colleagues Raghuraman Kannan, Anandhi Upendran, Charles Caldwell as well as others in the Department of Radiology and at the MU Research Reactor to develop and design the nanoparticles to the correct shape and size to treat prostate cancer. If the nanoparticles produced are too small, they can escape and spread; if they are made large enough, the nanoparticles will stay inside the tumor and treat it much more effectively than current methods.

"Current therapy for this disease is not effective in those patients who have aggressive prostate cancer tumors," Cutler said. "Most of the time, prostate cancers are slow-growing; the disease remains localized and it is easily managed. Aggressive forms of the disease spread to other parts of the body, and it is the second-leading cause of cancer deaths in U.S. men. However, we believe the gold nanoparticles could shrink the tumors, both those that are slow-growing and aggressive, or eliminate them completely."

"This treatment is successful due to the inherent properties of radioactive gold nanoparticles," Kannan said. "First, the gold nanoparticles should be made to the correct size, and second, they have very favorable radiochemical properties, including a very short half-life."

With a half-life of only 2.7 days, the radioactivity from the gold nanoparticles is finished within three weeks.

"Because of their size and the compound found in tea, the nanoparticles remain at the tumor sites," Upendran said. "This helps the nanoparticles maintain a high level of effectiveness, resulting in significant tumor volume reduction within 28 days of treatment."

In the current study, the team tested the nanoparticles on mice. Prior to human trials, the scientists will study the treatment in dogs with prostate cancer. Prostate cancer in dogs is extremely close to the human form of the disease.

"When it comes to drug discovery, MU is fortunate because we have a combination of experts in cancer research, animal modeling, isotope production and nanomedicine, and state-of-the-art research infrastructure to take discoveries from 'the bench to the bedside' and never leave campus," Katti said. "For example, we developed the nanoparticles here at our research reactor, which is one of the few places in the world that produces therapeutic, clinical grade radioisotopes. We then tested the radioactive gold nanoparticles in small animals in collaboration with other radiology researchers using testing facilities located at the Harry S. Truman Veterans Hospital. Our next steps include partnering with the College of Veterinary Medicine to treat larger animals with the hopes of having human clinical trials, held on our campus, soon."

Katti, Cutler, Kannan, Upendran and Caldwell were joined in the study by Ravi Shukla, Nripen Chanda and Ajit Zambre, all from the Department of Radiology.


'/>"/>

Contact: Christian Basi
BasiC@missouri.edu
573-882-4430
University of Missouri-Columbia
Source:Eurekalert  

Related biology technology :

1. Study improves understanding of surface molecules in controlling size of gold nanoparticles
2. Nanoparticles found in moon glass bubbles explain weird lunar soil behavior
3. Nanoparticles seen as artificial atoms
4. Light touch keeps a grip on delicate nanoparticles
5. New measuring techniques can improve efficiency, safety of nanoparticles
6. Metal nanoparticles shine with customizable color
7. Marshall study shows nanoparticles used as additives in diesel fuels can travel from lungs to liver
8. Draper Device Could Help Pave Way Towards “Kidney-On-A-Chip” Development
9. Penn researchers study of phase change materials could lead to better computer memory
10. Research could lead to new drugs for major diseases
11. New twist on old chemical process could boost energy efficiency
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Gold nanoparticles could treat prostate cancer with fewer side effects than chemotherapy
(Date:6/24/2016)... ... June 24, 2016 , ... Researchers at the Universita Politecnica delle ... people with peritoneal or pleural mesothelioma. Their findings are the subject of a new ... , Diagnostic biomarkers are signposts in the blood, lung fluid or tissue of mesothelioma ...
(Date:6/23/2016)... Md. , June 23, 2016 A person ... from the crime scene to track the criminal down. ... the U.S. Food and Drug Administration (FDA) uses DNA evidence ... Sound far-fetched? It,s not. The FDA ... sequencing to support investigations of foodborne illnesses. Put as simply ...
(Date:6/23/2016)... June 23, 2016   EpiBiome , a precision ... million in debt financing from Silicon Valley Bank (SVB). ... and to advance its drug development efforts, as well ... "SVB has been an incredible strategic partner ... a traditional bank would provide," said Dr. Aeron ...
(Date:6/23/2016)... 23, 2016  Blueprint Bio, a company dedicated to ... medical community, has closed its Series A funding round, ... "We have received a commitment from Forentis ... need to meet our current goals," stated Matthew ... runway to complete validation on the current projects in ...
Breaking Biology Technology:
(Date:3/29/2016)... , March 29, 2016 ... "Company") LegacyXChange "LEGX" and SelectaDNA/CSI Protect are pleased to ... ink used in a variety of writing instruments, ensuring ... of originally created collectibles from athletes on LegacyXChange will ... analysis of the DNA. Bill Bollander ...
(Date:3/22/2016)... 2016 According to ... for Consumer Industry by Type (Image, Motion, Pressure, ... & IT, Entertainment, Home Appliances, & Wearable ... 2022", published by MarketsandMarkets, the market for ... USD 26.76 Billion by 2022, at a ...
(Date:3/21/2016)... Unique technology combines v ... security   Xura, Inc. ... digital communications services, today announced it is working alongside ... customers, particularly those in the Financial Services Sector, the ... within a mobile app, alongside, and in combination with, ...
Breaking Biology News(10 mins):