Navigation Links
Getting the point: Real-time monitoring of atomic-microscope probes adjusts for wear
Date:3/31/2011

Scientists at the National Institute of Standards and Technology (NIST) have developed a way to measure the wear and degradation of the microscopic probes used to study nanoscale structures in situ and as it's happening. Their technique can both dramatically speed up and improve the accuracy of the most precise and delicate nanoscale measurements done with atomic force microscopy (AFM).

If you're trying to measure the contours of a surface with a ruler that's crumbling away as you work, then you at least need to know how fast and to what extent it is being worn away during the measurement.

This has been the challenge for researchers and manufacturers trying to create images of the surfaces of nanomaterials and nanostructures. Taking a photo is impossible at such small scales, so researchers use atomic force microscopes. Think of a device like a phonograph needle being used, on a nanoscale, to measure the peaks and valleys as it's dragged back and forth across a surface. These devices are used extensively in nanoscale imaging to measure the contours of nanostructures, but the AFM tips are so small that they tend to wear down as they traverse the surface being measured.

Today, most researchers stop the measurement to "take a picture" of the tip with an electron microscope, a time-consuming method prone to inaccuracies.

NIST materials engineer Jason Killgore has developed a method for measuring in real time the extent to which AFM tips wear down. Killgore measures the resonant frequency of the AFM sensor tip, a natural vibration rate like that of a tuning fork, while the instrument is in use. Because changes to the size and shape of the tip affect its resonant frequency, he is able to measure the size of the AFM's tip as it worksin increments of a tenth of a nanometer, essentially atomic scale resolution. The technique, called contact resonance force microscopy, is described in a paper recently published in the journal Small.*

The potential impact of this development is considerable. Thousands of AFMs are in use at universities, manufacturing plants and research and development facilities around the world. Improving their ability to measure and image nanosized devices will improve the quality and effectiveness of those devices. Another benefit is that developing new measurement tipsand studying the properties of new materials used in those tipswill be much easier and faster, given the immediate feedback about wear rates.


'/>"/>

Contact: James Burrus
james.burrus@nist.gov
303-497-4789
National Institute of Standards and Technology (NIST)
Source:Eurekalert  

Related biology technology :

1. Getting bubbles out of fuel pumps
2. Iowa State, Ames Laboratory scientists advance the understanding of the big getting bigger
3. Nanoparticles double their chances of getting into sticky situations
4. Getting Ready Corporation and Winston Laboratories, Inc. Announce Completion of Merger
5. DNA engine observed in real-time traveling along base pair track
6. Competitions Facilitate Real-time Science
7. METTLER TOLEDO and ThalesNano Bring Real-time Reaction Monitoring to Flow Synthesis
8. Real Time to Manufacturing Using Real-Time In Situ FTIR Analytics as a Process Analytical Technology (PAT) Tool
9. WaferGen to Launch Human MicroRNA Panel for Gene-Expression Profiling of 885 MicroRNA for Its Service Using the SmartChip(TM) Real-Time PCR System
10. WaferGen Announces that University of Texas Southwestern Medical Center Demonstrates Utility of New SmartChip(TM) Nano-Dispenser with WaferGens SmartChip(TM) High-throughput Real-Time PCR System
11. Development of Batch and Continuous Chemical Processes Using Real-Time In Situ FTIR Analytics as a Process Analytical Technology (PAT) Tool
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Getting the point: Real-time monitoring of atomic-microscope probes adjusts for wear
(Date:12/2/2016)... , ... December 01, 2016 , ... DrugDev ... collaboration, standardization and a beautiful technology experience. All three tenets were on display at ... clinical trial leaders from over 40 sponsor, CRO and site organizations to discuss innovation ...
(Date:12/2/2016)... ... December 02, 2016 , ... ... and biotechnology companies dedicated to collaboratively developing improved chemistry, manufacturing and control ... vendor-supported, portable online UHPLC, with robust, probe-based sampling. , Online liquid ...
(Date:12/2/2016)... NEW YORK , Dec. 1, 2016   ... liquid photopurification, announced today that the Company has concluded ... has the right for a 90-day period to acquire ... invoice value of approximately USD 3.7 million.  ... an agreement with Tamarack under which Tamarack will seek ...
(Date:12/2/2016)... , Dec. 2, 2016 /PRNewswire/ - bioLytical Laboratories, a world leader in rapid ... Kenya,s Pharmaceutical Association members. (Photo: http://photos.prnewswire.com/prnh/20161201/444905 ) ... ... , , ... and the Kenya Pharmaceutical Association (KPA) to introduce the INSTI HIV Self Test to ...
Breaking Biology Technology:
(Date:11/17/2016)... , Nov. 17, 2016  AIC announces that it has just released a ... organizations that require high-performance scale-out plus high speed data transfer storage solutions. ... ... ... Setting up a high performance ...
(Date:11/14/2016)... 14, 2016  xG Technology, Inc. ("xG" or the ... wireless communications for use in challenging operating environments, announced ... 2016. Management will hold a conference call to discuss ... Eastern Time (details below). Key Recent Accomplishments ... million binding agreement to acquire Vislink Communication Systems. The ...
(Date:6/22/2016)... 22, 2016   Acuant , the ... solutions, has partnered with RightCrowd ® ... Visitor Management, Self-Service Kiosks and Continuous Workforce ... add functional enhancements to existing physical access ... venues with an automated ID verification and ...
Breaking Biology News(10 mins):