Navigation Links
Getting More Life out of Lithium-ion Batteries
Date:7/24/2014

Livermore, California (PRWEB) July 24, 2014

Your cell phone may stay charged longer due to advances in modeling lithium-ion battery storage capacity.

New research indicates that lithium-ion batteries could benefit from a theoretical model created at Lawrence Livermore National Laboratory and Rice University that predicts how carbon components will perform as electrodes.

The growing demand for energy storage emphasizes the urgent need for higher-performance batteries. Several key characteristics of lithium-ion battery performance -- capacity, voltage and energy density -- are ultimately determined by the binding between lithium ions and the electrode material. Yet subtle changes in the structure, chemistry and shape of an electrode can significantly affect how strongly lithium ions bond to it, in a way researchers don't fully understand.

The new model predicts the strength of this binding based on intrinsic characteristics of carbon materials used as battery anodes.

The research appears in the July 11 edition of the journal Physical Review Letters. Lawrence Livermore scientist Brandon Wood and Rice theoretical physicist Boris Yakobson led the study.

The team's theory included calculations to investigate the interactions of lithium with a wide variety of carbon substrates, including pristine, defective and strained graphene, planar carbon clusters, nanotubes, carbon edges and multilayer stacks.

Lithium-ion batteries are growing in popularity for electric vehicle and aerospace applications. For example, lithium-ion batteries are becoming a common replacement for the lead acid batteries that have been used historically for golf carts and utility vehicles. Instead of heavy lead plates and acid electrolytes, the trend is to use lightweight lithium-ion battery packs that can provide the same voltage as lead-acid batteries without requiring modification of the vehicle's drive system. In addition, Tesla Motors recently announced a plan to build a lithium-ion battery "gigafactory."

Wood and Rice University's Yuanyue Liu, lead author of the study, were looking for a "descriptor," a characteristic that would capture the essential physics of interactions between lithium and a variety of carbon materials.

"The fact that our descriptor predicts the performance of such a wide variety of materials is surprising," Wood said. "It means the underlying physics is really very similar, even if the structure, morphology or chemistry differs from one candidate to the next. It's really a very simple and elegant finding that could accelerate design and discovery."

The theoretical model also provides guidelines for engineering more effective anodes by modifying the electronic and chemical properties of other candidate materials.

Read the full story at http://www.prweb.com/releases/2014/07/prweb12045095.htm.


'/>"/>
Source: PRWeb
Copyright©2014 Vocus, Inc.
All rights reserved

Related biology technology :

1. Jump Start: New Program Aims at Getting Severely Obese Children Treated More Quickly
2. Getting a grip on inventory management using RF
3. Sales Momentum Helps Companies Drive Revenue by Getting Major Account Sales Strategy Right
4. Acne Treatment, Probiotic Action Explains New Insight on Why More Children are Getting Acne
5. Steps for Getting Rid of Bed Bugs without Using Chemicals and Avoiding Them While Traveling Enumerated by My Cleaning Products in Its Latest Post
6. Safety reflector technology from footwear getting new life in detecting bioterror threats
7. Probiotic Action Shares New Insight Why Getting Rid of Bacteria Can Be Bad for Your Health
8. Patheon to Host Complimentary Seminar on “Getting Your Drug through Phase I Early Development Effectively” at Milton Park, UK Facility
9. Lung mucus gel scaffold prevents nanoparticles from getting through
10. Silicon sponge improves lithium-ion battery performance
11. Why lithium-ion-batteries fail
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/22/2017)... 22, 2017   Boston Biomedical , an industry ... to target cancer stemness pathways, today announced its Board ... as Chief Executive Officer, effective April 24, 2017. ... Li , M.D., FACP, who has led Boston Biomedical ... his leadership, Boston Biomedical has grown from a "garage ...
(Date:3/22/2017)... (PRWEB) , ... March 21, 2017 , ... ... of biologics. To acquire information on the desired increase and/or decrease in antibody-dependent ... industry for rapid N-glycosylation profiling of therapeutic antibodies. , To meet this ...
(Date:3/22/2017)... (PRWEB) , ... March 21, ... ... ( WMFTG ) has unveiled its innovative Quantum peristaltic pump with patented ... innovation, Quantum sets the new standard for high-pressure feed pumps in SU ...
(Date:3/22/2017)... and PETACH TIKVAH, Israel ... (NASDAQ: BCLI), a leading developer of adult stem cell ... Lebovits , Chief Executive Officer, will provide an update ... Associates 2 nd Annual Neuroscience Biopartnering and Investment ... the New York Academy of Sciences. ...
Breaking Biology Technology:
(Date:2/22/2017)... 2017 With the biometrics market to ... four technologies that innovative and agile startups must ... in the changing competitive landscape: multifactor authentication (MFA), ... "Companies can no longer afford to ... Dimitrios Pavlakis , Industry Analyst at ABI ...
(Date:2/13/2017)...  RSA Conference -- RSA, a Dell Technologies business, ... enhance fraud detection and investigation across digital environments ... & Risk Intelligence Suite. The new platform is ... from internal and external sources as well as ... from targeted cybercrime attacks. "Fraudsters are ...
(Date:2/8/2017)... (NASDAQ: AWRE ), a leading supplier of biometrics ... and year ended December 31, 2016. Revenue ... to $6.9 million in the same quarter last year. Operating ... compared to $2.6 million in the fourth quarter of 2015. ... million, or $0.02 per diluted share, which compares to $1.8 ...
Breaking Biology News(10 mins):