Navigation Links
Getting More Life out of Lithium-ion Batteries

Livermore, California (PRWEB) July 24, 2014

Your cell phone may stay charged longer due to advances in modeling lithium-ion battery storage capacity.

New research indicates that lithium-ion batteries could benefit from a theoretical model created at Lawrence Livermore National Laboratory and Rice University that predicts how carbon components will perform as electrodes.

The growing demand for energy storage emphasizes the urgent need for higher-performance batteries. Several key characteristics of lithium-ion battery performance -- capacity, voltage and energy density -- are ultimately determined by the binding between lithium ions and the electrode material. Yet subtle changes in the structure, chemistry and shape of an electrode can significantly affect how strongly lithium ions bond to it, in a way researchers don't fully understand.

The new model predicts the strength of this binding based on intrinsic characteristics of carbon materials used as battery anodes.

The research appears in the July 11 edition of the journal Physical Review Letters. Lawrence Livermore scientist Brandon Wood and Rice theoretical physicist Boris Yakobson led the study.

The team's theory included calculations to investigate the interactions of lithium with a wide variety of carbon substrates, including pristine, defective and strained graphene, planar carbon clusters, nanotubes, carbon edges and multilayer stacks.

Lithium-ion batteries are growing in popularity for electric vehicle and aerospace applications. For example, lithium-ion batteries are becoming a common replacement for the lead acid batteries that have been used historically for golf carts and utility vehicles. Instead of heavy lead plates and acid electrolytes, the trend is to use lightweight lithium-ion battery packs that can provide the same voltage as lead-acid batteries without requiring modification of the vehicle's drive system. In addition, Tesla Motors recently announced a plan to build a lithium-ion battery "gigafactory."

Wood and Rice University's Yuanyue Liu, lead author of the study, were looking for a "descriptor," a characteristic that would capture the essential physics of interactions between lithium and a variety of carbon materials.

"The fact that our descriptor predicts the performance of such a wide variety of materials is surprising," Wood said. "It means the underlying physics is really very similar, even if the structure, morphology or chemistry differs from one candidate to the next. It's really a very simple and elegant finding that could accelerate design and discovery."

The theoretical model also provides guidelines for engineering more effective anodes by modifying the electronic and chemical properties of other candidate materials.

Read the full story at

Source: PRWeb
Copyright©2014 Vocus, Inc.
All rights reserved

Related biology technology :

1. Jump Start: New Program Aims at Getting Severely Obese Children Treated More Quickly
2. Getting a grip on inventory management using RF
3. Sales Momentum Helps Companies Drive Revenue by Getting Major Account Sales Strategy Right
4. Acne Treatment, Probiotic Action Explains New Insight on Why More Children are Getting Acne
5. Steps for Getting Rid of Bed Bugs without Using Chemicals and Avoiding Them While Traveling Enumerated by My Cleaning Products in Its Latest Post
6. Safety reflector technology from footwear getting new life in detecting bioterror threats
7. Probiotic Action Shares New Insight Why Getting Rid of Bacteria Can Be Bad for Your Health
8. Patheon to Host Complimentary Seminar on “Getting Your Drug through Phase I Early Development Effectively” at Milton Park, UK Facility
9. Lung mucus gel scaffold prevents nanoparticles from getting through
10. Silicon sponge improves lithium-ion battery performance
11. Why lithium-ion-batteries fail
Post Your Comments:
(Date:11/25/2015)... Studies reveal the differences in species of ... way for more effective treatment for one of the most ... --> --> Gum disease is ... yet relatively little was understood about the bacteria associated with ... by researchers from the WALTHAM Centre for Pet Nutrition together ...
(Date:11/25/2015)... , Nov. 25, 2015 Orexigen® Therapeutics, ... will participate in a fireside chat discussion at the ... New York . The discussion is scheduled for ... .  A replay will be available ... Contact:McDavid Stilwell  , Julie NormartVP, Corporate Communications and ...
(Date:11/24/2015)... Nov. 24, 2015 Cepheid (NASDAQ: CPHD ... at the following conference, and invited investors to participate ...      Tuesday, December 1, 2015 at 11.00 a.m. ...      Tuesday, December 1, 2015 at 11.00 a.m. ... New York, NY      Tuesday, December ...
(Date:11/24/2015)... , Nov. 24, 2015 /PRNewswire/ - Aeterna Zentaris ... of IIROC on behalf of the Toronto Stock Exchange, ... release there are no corporate developments that would cause ... --> --> About Aeterna ... . --> Aeterna Zentaris is a ...
Breaking Biology Technology:
(Date:10/26/2015)... India , October 26, 2015 ... --> adds ... 2015 to 2021 as well as ... 2015-2019 research reports to its collection ... . --> ...
(Date:10/23/2015)... -- Research and Markets ( ) has announced ... Market 2015-2019" report to their offering. ... voice recognition biometrics market to grow at a CAGR ... --> The report, Global Voice Recognition ... in-depth market analysis with inputs from industry experts. The ...
(Date:10/22/2015)... Oct. 22, 2015  Synaptics (NASDAQ: SYNA ), a leading ... first quarter ended September 30, 2015. --> ... fiscal 2016 grew 66 percent over the comparable quarter last year ... 2016 was $23.8 million, or $0.62 per diluted share. ... the first quarter of fiscal 2016 grew 39 percent over the ...
Breaking Biology News(10 mins):