Navigation Links
Germanium made laser compatible
Date:4/22/2013

Researchers from ETH Zurich, the Paul Scherrer Institute (PSI) and the Politec-nico di Milano have jointly developed a manufacturing technique to render the semiconductor germanium laser-compatible through high tensile strain. In their article recently published in "Nature Photonics", they reveal how they can gen-erate the necessary tensile strain efficiently. The scientists demonstrate how to use their method to effectively alter the optical properties of germanium, which is naturally unsuitable for lasing: "With a strain of three per cent, the material emits around twenty-five times more photons than in a relaxed state," explains Martin Sess, a doctoral student at the Laboratory for Nanometallurgy headed by Ralph Spolenak and the EMEZ at ETH Zurich. "That's enough to build lasers", adds his colleague Richard Geiger, a doctoral student at the Laboratory for Micro- and Nanotechnology at the PSI and the Institute for Quantum Electronics at ETH Zurich under Jrme Faist.

High tension through microbridges

With the new method, the researchers use the slight tension generated in ger-manium when it evaporates on silicon, to bring the germanium into a laser-compatible, strechted form. This prestrain is enhanced with so-called micro-bridges: the researchers centrally notch the sides of exposed germanium strips, which remain attached to the silicon layer at both ends. The two halves of the strip thus remain connected solely by an extremely narrow bridge, which is for physical reasons precisely where the strain in the germanium grows so intense that it becomes laser-compatible.

"The tensile strain applied to the germanium is comparable to the force exerted on a pencil as two lorries pull upon it in opposite directions," says Hans Sigg, the project manager at the PSI, explaining the feat on a micrometre scale in everyday proportions. Through the expansion of the material its properties change because the individual atoms slightly move apart, which enables the electrons within the material to reach energy levels that are favourable for the generation of light particles, so-called photons.

Germanium laser for the computer of the future

The interdisciplinary research team's method could increase the performance of future computer generations considerably. After all, in order to improve comput-er performance, computer chips have constantly been made smaller and more densely packed. However, this approach will eventually reach its limits in the foreseeable future. "In order to further increase performance and speed, the individual components need to be linked more closely and communicate with each other more efficiently," explains Sess. This requires new transmission paths that are faster than today, where the signals are still transmitted via elec-tricity and copper cables.

"The future way to go is light," says Geiger. However, in order to be able to use light to transfer data, first of all light sources are needed that are so small as to fit onto a chip and react well to silicon, the base material of all computer chips. Silicon itself is not suitable for the emission of laser light, which is also the reason why it is so important for the researchers to make germanium laser-compatible: "Germanium is perfectly compatible with silicon and already used in the computer industry for the production of silicon chips," explains Geiger. If it is possible to build tiny lasers out of germanium using the new method, a system change is within reach. "We're on the right track," says Sess. The international team of researchers is currently in the process of actually constructing a germa-nium laser with the new method.


'/>"/>

Contact: Martin Sueess
mmartin.sueess@emez.ethz.ch
41-446-336-408
ETH Zurich
Source:Eurekalert

Related biology technology :

1. Eye Surgery Center of Michigan First in Southeast Michigan to Perform Bladeless Cataract Surgery Using New LenSx® Laser Technology
2. New method for enhancing thermal conductivity could cool computer chips, lasers and other devices
3. Research could improve laser-manufacturing technique
4. Cooling semiconductor by laser light
5. New laser can point the way to new energy harvesting
6. Metamaterials may advance with new femtosecond laser technique
7. UCSB Physicists mix 2 lasers to create light at many frequencies
8. CU-Boulder physicists use ultrafast lasers to create first tabletop X-ray device
9. JPSA Introduces Picosecond Laser Micromachining System
10. Calmar Laser Growth Reinforced by ISO 9001:2008 Certification
11. Worlds smallest semiconductor laser created by University of Texas scientists
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/28/2016)... , April 28, 2016 The ... and Brayton Cryocoolers), Service (Technical Support, Product Repairs & ... - Global Forecast to 2022", published by MarketsandMarkets, the ... Billion by 2022, at a CAGR of 7.29% between ... data Tables and 94 Figures spread through 159 Pages ...
(Date:4/28/2016)... ... April 28, 2016 , ... ... hold an open house for regional manufacturers at its Maple Grove, Minnesota technical ... Okuma, Hardinge Group, Chiron and Trumpf. Almost 20 leading suppliers of tooling, ...
(Date:4/27/2016)... 2016 NanoStruck Technologies Inc. ... ( Frankfurt : 8NSK) gibt bekannt, ... 13. August 2015 die Genehmigung von der CNSX ... 200.000.000 Einheiten auf 400.000.000 Einheiten zu erhöhen, um ... wurden 157.900.000 Einheiten mit dem ersten Teil der ...
(Date:4/27/2016)... ... April 27, 2016 , ... A compact PET ... Tomography) and MRI (Magnetic Resonance Imaging) in existing third-party MRI systems. PET and ... in small animal subjects. Simultaneous PET/MRI imaging offers a solution to many challenges ...
Breaking Biology Technology:
(Date:3/3/2016)... England and DE SOTO, Kansas ... , U.S.-based Stroke Detection Plus® to offer Oncimmune,s ... risk assessment and early detection of lung cancer ... large employers, unions and individuals. --> Early ... unions and individuals. --> Oncimmune, a leader ...
(Date:3/2/2016)... March 2, 2016 ... the "Global Biometrics as a Service ... --> http://www.researchandmarkets.com/research/cmt3hk/global_biometrics ) has ... Biometrics as a Service Market 2016-2020" ... Research and Markets ( http://www.researchandmarkets.com/research/cmt3hk/global_biometrics ) ...
(Date:3/1/2016)... , March 1, 2016  (RSAC Booth #3041) – ... a whopping $118 billion is lost to false positives, ... and inaccurate fraud detection. At the RSA Conference 2016, ... way companies handle authentication by devaluing the data fraudsters ... analytics. --> --> ...
Breaking Biology News(10 mins):