Navigation Links
Gem of an idea: A flexible diamond-studded electrode implanted for life
Date:10/5/2010

Diamonds adorning tiaras to anklets are treasures but these gemstones inside the body may prove priceless.

Two Case Western Reserve University researchers are building implants made of diamond and flexible polymer that are designed to identify chemical and electrical changes in the brain of patients suffering from neural disease, or to stimulate nerves and restore movement in the paralyzed.

The work of Heidi Martin, a professor of chemical engineering, and Christian Zorman, a professor of electrical engineering and computer science, is years from human trials but their early success has drawn interest worldwide.

"Right now, we're trying to develop diamond-coated electrodes for implantable devices which last a lifetime," Martin said. "A patient would have one surgery and that's it."

For most materials, it's hell inside the body. But even inside us, a diamond is forever. Unlike standard electrodes, diamonds won't corrode, Martin said.

Diamond is so hard and rigid, however, that an entire implant made of the stuff would quickly damage surrounding tissue and the body would seal off the implant as if it were a splinter, Zorman said.

The key is to use just enough diamond. " We only need diamond at the biological interface where the device connects with a nerve," Zorman said.

To marry one of the world's hardest materials and a flexible plastic, Martin and Zorman use much the same process used to manufacture computer chips.

Martin's lab grows diamond film real diamond - under high temperature, in a vacuum. By adding impurities they change the diamond's properties. For electrodes, the team adds boron, turning the diamond blue. Blue diamonds, including the famous Hope Diamond at the Smithsonian, conduct electricity.

Because diamond is made at 800 to 900 degrees Celsius, a temperature that would melt the polymer base, Martin first selectively grows a series of tiny squares of diamond film on silicon dioxide, the stuff of sand and quartz.

Zorman's group then lays down a thin flexible polymer that fills in the gaps between diamonds, followed by a layer of metal that connects to the back of the diamonds and will conduct electricity. Lastly, he adds a thick layer of flexible polymer base. They then dip the device in hydrofluoric acid, which eats away the silicon dioxide and frees the probe.

Small, cortical probes that measure chemical changes at a location in the brain or along a nerve have two diamond contacts affixed. These probes are designed to assist health researchers who are trying to understand the role of chemicals in stimulating nerves or communicating within the brain.

Recent research has found, for example, a link between a deficiency in the neurotransmitter dopamine and Parkinson's disease.

Currently, medical researchers are using carbon-based needle electrodes to monitor neurotransmitters. But, the electrode is fragile a glass tube supports the carbon, Martin said. The polymer and diamond probe can remain in the body much longer and the diamond has proved exceptional at chemical sensing, Martin said.

Martin and Zorman also build electrodes with arrays of eight or more electrically-connected diamond segments. These are designed for neruoprostheses, to stimulate nerves, enabling a paralyzed patient to stand or a blind patient to see.

With space inside the body at a premium, the diamond has another advantage. Lab tests show one diamond-coated electrode can monitor chemical and electrical signals as well as stimulate nerves.

Martin has also found another way to make a flexible probe coated with diamond, by growing diamond film on a wire of rhenium alloy. Metals typically become brittle in the high-heat of diamond processing.

But she's able to bend a diamond-coated tungsten-rhenium wire 75 degrees before fracturing and a molybdenum-rhenium alloy more than 90 degrees.

Martin, Zorman and their lab staff have been invited to several leading international conferences this year to talk about the work, including the Electrochemical Society meeting in Vancouver in April and the European Materials Research Society meeting, Strasbourg, France in June. They also presented this work at the 2010 Solid State Sensor, Actuator and Microsystems Workshop in Hilton Head SC in June.

Martin spoke at Budapest, Diamond 2010: 21st European Conference on Diamond, Diamond-Like Materials, Carbon Nanotubes, and Nitrides, last month and will talk at a Veterans' Affairs seminar in Cleveland in December.

"The potential to help make a device that can help clinically and advance research would be so thrilling," Martin said. "The time scale is long, but I think we have a good chance at it."


'/>"/>

Contact: Kevin Mayhood
kevin.mayhood@case.edu
216-368-4442
Case Western Reserve University
Source:Eurekalert

Related biology technology :

1. Asia Pacific Flexible Alternating Current Transmission Equipment Markets
2. Nanopillars promise cheap, efficient, flexible solar cells
3. Bedford Laboratories(TM) to Begin Shipping Fluconazole Injection in PVC Flexible Containers
4. USC researchers print dense lattice of transparent nanotube transistors on flexible base
5. New Radiation-Blocking Medical Garments Introduced at RSNA Meeting in Chicago : Demron-M Technology Provides Total Protection in a Lightweight, Durable, Flexible Fabric
6. New Flexible Vacuum Controller from Varian, Inc. is Expandable and Easy to Use
7. Flexible nanoantenna arrays capture abundant solar energy
8. Implanted glucose sensor works for more than 1 year
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:10/11/2017)... BioMarketing, a leading provider of patient support solutions, has announced ... network, which will launch this week. The VMS CNEs will ... to enhance the patient care experience by delivering peer-to-peer education ... professionals to help women who have been diagnosed and are ... ...
(Date:10/10/2017)... ... October 10, 2017 , ... San Diego-based team building ... corporate rebranding initiative announced today. The bold new look is part of a ... company moves into a significant growth period. , It will also expand its service ...
(Date:10/10/2017)... Oct. 10, 2017 SomaGenics announced the receipt ... to develop RealSeq®-SC (Single Cell), expected to be the ... RNAs (including microRNAs) from single cells using NGS methods. ... need to accelerate development of approaches to analyze the ... "New techniques for measuring levels of mRNAs in ...
(Date:10/9/2017)... ... October 09, 2017 , ... At its national board meeting in North ... in Harvard University’s Departments of Physics and Astronomy, has been selected for membership in ... winning team for the 2015 Breakthrough Prize in Fundamental physics for the discovery of ...
Breaking Biology Technology:
(Date:10/4/2017)... BLOOMINGTON, Ill. , Oct. 4, 2017  GCE Solutions, a ... powerful new data and document anonymization solution on October 4, 2017. ... the pharmaceutical field to comply with policy 0070 of the European ... documents and data. ... Innovation by GCE Solutions ...
(Date:6/23/2017)... and ITHACA, N.Y. , ... and Cornell University, a leader in dairy research, today ... bioinformatics designed to help reduce the chances that the ... the onset of this dairy project, Cornell University has ... for Sequencing the Food Supply Chain, a food safety ...
(Date:5/6/2017)... RAM Group , Singaporean based ... in biometric authentication based on a novel  ... to perform biometric authentication. These new sensors are based on ... Ram Group and its partners. This sensor will have ... and security. Ram Group is a next generation ...
Breaking Biology News(10 mins):